Development of SSR loci in Prosopis tamarugo Phillipi and assessment of their transferability to species of the Strombocarpa section

  • Roberto Contreras-Díaz Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.
  • Felipe S. Carevic Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables. Universidad Arturo Prat, Campus Huayquique, Iquique, Chile
  • Vincenzo Porcile Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.
  • Mariana Arias-Aburto Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.


Aims of the study: Phreatophyte species of the Prosopis genus are very important to natural ecosystems in Africa, South America and Asia due to their uses as food and seed sources and in agroforestry. In this research, through next-generation sequencing, we sought to search for and develop SSR markers in Prosopis tamarugo, in addition to assessing their transferability to other species in the Strombocarpa section.

Area of study: The study was carried out in species of the Strombocarpa section collected in the “Pampa del Tamarugal”, located in the Atacama Desert (Chile); which is considered the driest and oldest desert on Earth.

Materials and methods: The next-generation sequencing for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in P. tamarugo and their transferability in Prosopis burkartii and Prosopis strombulifera was used.

Main results: A total of ~90.000 microsatellite loci in P. tamarugo were found, and a set of 43 primer pairs was used for validating SSR locus amplification. We found a large difference in the percentage of amplified SSR markers between species of the Strombocarpa and Algarobia sections.

Research highlights: The present study provides for the first time 24 polymorphic SSR markers for species in the Strombocarpa section, which could be a useful tool for estimating genetic structure, developing breeding programs, quantifying genetic diversity and performing population studies.

Keywords: Strombocarpa section; Prosopis tamarugo; Atacama Desert; microsatellites; NGS.


Download data is not yet available.


Aleksic JM, StojanoviĆ D, BanoviĆ B, JanČiĆ R, 2012. A simple and efficient DNA isolation method for Salvia officinalis. Biochem Genet 50: 881-892.

Altamirano H, 2006. Prosopis tamarugo Phil. Tamarugo. In: Las especies arbóreas de los bosques templados de Chile y Argentina; Donoso, C. (eds.). pp: 534-540. Marisa Cuneo Ediciones, Valdivia, Chile.

Alves FM, Zucchi MI, Azevedo-Tozzi AM, Sartori ÂL, Souza AP, 2014. Characterization of microsatellite markers developed from Prosopis rubriflora and Prosopis ruscifolia (Leguminosae - Mimosoideae), legume species that are used as models for genetic diversity studies in Chaquenian areas under anthropization in South America. BMC Res Notes 7: 375.

Aravena R, Acevedo E, 1985. The use of environmental isotopes oxigen-18 and deuterium in the study of wáter relations of Prosopis tamarugo Phil. In: The Current State of Knowledge of Prosopis tamarugo. pp. 251-256. Ediciones M. Habit, NewYork, (Food and Agriculture Organization of The United Nations).

Azua-Bustos A, Urrejala C, Vicuña R, 2012. Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett 586: 2939-2945.

Barros S, 2010. El género Prosopis, valioso recurso forestal de las zonas áridas y semiáridas de América, Asia y África. Ciencia e Investigación Forestal del Instituto Forestal-Chile 16(1): 91-128.

Bastías A, Correa F, Rojas P, Almada R, Muñoz C, Sagredo B, 2016. Identification and characterization of microsatellite loci in maqui (Aristotelia chilensis [molina] Stunz) using next-generation sequencing (NGS). PLoS One 11(7): e0159825.

Bessega CF, Pometti CL, Miller JT, Watts R, Saidman BO, Vilardi JC, 2013. New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae). App Plant Sci 1(5): 1200324.

Botstein D, White RD, Skolnick M, Davis RW, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314-331.

Burghardt AD, Espert SM, Palacios RA, 2004. La electroforesis de proteínas seminales como evidencia del origen híbrido de Prosopis abbreviata (Mimosaceae). Bol Soc Argent Bot 39 (1-2): 83 - 87.

Burkart A, 1976. A Monograph of the Genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arbor 57: 450-525.

Calderón G, Garrido M, Acevedo E, 2015. Prosopis tamarugo Phil.: a Native tree from the Atacama Desert ground water table depth thresholds for conservation. Rev chil hist nat 88: 18.

Carevic F, Carevic A, Delatorre J, 2012. Historia natural del género Prosopis en la Región de Tarapacá. Idesia 30(3): 113-117.

Carevic F, Delatorre J, Carrasco A, 2017. Plant water variables and reproductive traits are influenced by seasonal climatic variables in Prosopis burkartii (Fabaceae) at Northern Chile. Flora 233: 7-11.

Clarke DA, 2006. The antiquity of the aridity in the Chilean Atacama Desert. Geormophology 73: 101-114.

Contreras R, Porcile V, Aguayo F, 2019a. Microsatellites reveal a high genetic differentiation among native Geoffroea decorticans populations in Chilean Atacama Desert. B Soc Argent Bot 54(2): 225-240.

Contreras R, Porcile V, Guggiana-Nilo D, Aguayo F, 2019b. An efficient protocol to perform genetic traceability of tissue and foods from Geoffroea decorticans. Chil J agric anim sci 35(3): 224-237.

Contreras R, Figueiras AM, Gallego FJ, Benavente E, Manzaneda AJ, Benito C, 2017. Neutral molecular markers support common origin of aluminium tolerance in three congeneric grass species growing in acidic soils. AoB Plants 9(6): plx060.

Chaves MM, Costa JM, Saibo NJM, 2011. Recent advances in photosynthesis under drought and salinity I. Turkan (Ed.). In: Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era. pp. 49-104. Academic Press Ltd-Elsevier Science Ltd, London.

Chávez R, Jan G, Clevers W, Herold M, Acevedo E, Ortiz M, 2013. Assessing water stress of desert tamarugo trees using in situ data and very high spatial resolution remote sensing. Remote Sens 5: 5064-5088.

Decuyper M, Chávez RO, Copini P, Sass-Klaassen U, 2016. A multi-scale approach to assess the effect of groundwater extraction on Prosopis tamarugo in the Atacama Desert J Arid Environ 131: 25-34.

Demeke T, Jenkins GR, 2010. Influence of DNA extraction methods, PCR inhibitiors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396: 1977-1990.

Felker P, 2009. Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Novel; De la Barrera E and Smith WK, (eds). pp: 221-255. Universidad Nacional Autónoma de México, México.

Ferreyra LI, Vilardi JC, Verga A, López V, Saidman BO, 2013. Genetic and morphometric markers are able to differentiate three morphotypes belonging to Section Algarobia of genus Prosopis (Leguminosae, Mimosoideae). Plant Syst Evol 299: 1157-1173.

Garrido M, Silva H, Franck N, Arenas J, Acevedo E, 2018. Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert. Front Plant Sci 9: 453.

González EG, 2003. Microsatélites: sus aplicaciones en la conservación de la biodiversidad. Graellsia 59(2-3): 377-388.

Hartley A, Chong G, Houston J, Mather A, 2005. 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Soc Lond 162(3): 421-424.

Healey A, Furtado A, Cooper T, Henrry RJ. 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10: 21.

Hunziker JH, Naranjo CA, Palacios RA, Poggio L, Saidman BO, 1986. Studies on the taxonomy, genetic variation and biochemistry of Argentine species of Prosopis. For Ecol Manag 16: 301-315.

Lawson S, Ebrahimi A, 2018. Development and validation of Acacia koa and A. koaia nuclear SSRs using Illumina sequencing. Silvae Genet 67: 20-25.

Lehner G, Delatorre J, Lütz C, Cardemil L, 2001. Field studies on the photosynthesis of two desert Chilean plants: Prosopis chilensis and Prosopis tamarugo. J Photochem Photobiol B Biol 64: 36-44.

Liu FM, Hong Z, Yang ZJ, Zhang NN, Liu XJ, Xu DP, 2019. De novo transcriptome analysis of Dalbergia odorifera and transferability of SSR markers developed from the transcriptome. Forests 10(2): 98.

Llanes A, Bonercarrere V, Capdevielle F, Vidal S, Luna V, 2011. Genetic diversity in a natural population of the halophytic legume Prosopis strombulifera revealed by AFLP fingerprinting. Bol Soc Argent Bot 46(3-4): 305-312.

McRostie VB, Gayo EM, Santoro CM, De Pol-Holz R, Latorre C, 2017. The pre-Columbian introduction and dispersal of Algarrobo (Prosopis, section algarobia) in the Atacama Desert of northern Chile. PLoS ONE 12: e0181759.

MMA, 2019. Ministerio de Medio Ambiente (Ficha ID 585), Antecedentes de la especie Prosopis tamarugo.

Mollard FPO, Hoc PS, Palacios RA, 2000. Prosopis abbreviata (Mimosaceae) y su presunto origen híbrido. Bol Soc Argent Bot 35: 305-313.

Mottura MC, Finkeldey R, Verga AR, Gailing O, 2005. Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5: 487-489.

Mworia JK. Kinyamario JI, Omari JK, Wambua JK, 2011. Patterns of Seed Dispersal and Establishment of the Invader Prosopis juliflora in the Upper 57 Floodplain of Tana River, Kenya. Afr J Range Forage Sci 28(1): 35-41.

Nandwani D, Ramawat KG, 1992. High frequency plantlets regeneration from seedling explants of Prosopis tamarugo. Plant Cell Tissue Organ Cult 29: 173-178.

Peakall R, Smouse PE, 2012. GenAlEx 6.5. Bioinformatics 28: 2537-2539.

Porth I, El-Kassaby A, 2014. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity 6(2): 283-295.

Psifidi A, Dovas CI, Bramis G, Lazou T, Russel CL, Arsenos G, Banos G. 2015. Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples. Plos One 10(1): e0115960.

Rozen S, Skaletsky H, 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386.

Saidman BO, Vilardi JC, Pocovi MI, Acreche N, 1996. Genetic divergence among species of the section Strombocarpa, genus Prosopis (Leguminosae). J Genet 75: 139-149.

Sun T, Bao H, Reich M, Hemming SR, 2018. More than Ten Million Years of Hyper-aridity recorded in the Atacama Gravels. Geochim Cosmochim Acta 227: 123-132.

Thiel T, Michalek W, Varshney RK and Graner A, 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106: 411-422.

Time A, Garrido M, Acevedo E, 2018. Water relations and growth response to drought stress of Prosopis tamarugo Phil. A review. J. Soil Sci Plant Nutr 18: 329-343.

Vega M, Hernández P, 2005. Molecular evidence for natural interspecific hybridization in Prosopis. Agroforest Syst 64: 197-202.

Zhang J, Kobert K, Flouri T, Stamatakis A, 2014. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30: 614-620.

How to Cite
Contreras-DíazR., S. CarevicF., PorcileV., & Arias-AburtoM. (2020). Development of SSR loci in Prosopis tamarugo Phillipi and assessment of their transferability to species of the Strombocarpa section. Forest Systems, 29(2), e012.
Research Articles