Salicylic and citric acid as promising new stimulants for resin tapping in maritime pine (Pinus pinaster Ait.)

  • Santiago Michavila Puente-Villegas Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid. http://orcid.org/0000-0001-6691-2270
  • Aida Rodríguez García Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid. http://orcid.org/0000-0002-5497-5116
  • Faustino Rubio Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
  • Luis Gil Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid. http://orcid.org/0000-0002-5252-2607
  • Rosana Lopez Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid. http://orcid.org/0000-0003-3553-9148

Abstract

Aim of the study: We tested alternative active principles to the most widely used resin tapping stimulant which contains sulphuric acid. We also studied the effect of wounding in five-year-old Pinus pinaster seedlings with a microtapping method.

Area of study: The experiment was carried out at the Universidad Politécnica de Madrid in Spain.

Material and Methods: The experiment consisted of six treatments: control (no stimulant no wounding), wound (no stimulant), and pines stimulated with sulphuric acid, ethrel, salicylic acid and citric acid. We evaluated the resin yield differentiating between released resin and internal resin (resin retained within the xylem), and the physiological status of the tree.

Main Results: Wounded plants produced on average three times more resin than control plants. Plants stimulated with salicylic and citric acids showed the highest resin yield and produced on average 15% more resin than those stimulated with sulphuric acid, mainly because the released resin was higher. Tree diameter affected resin yield and thicker trees produced more resin. We did not observe any significant effect of the treatments on stomatal conductance and only a marginal significant effect (p<0.10) on water potential.

Research highlights: Salicylic acid and citric acid seem to be promising stimulants for the resin tapping activity to be further tested in field experiments with adult trees.

Keywords: sulphuric acid; ethrel; pine resin; microtapping; wounding; water potential; stomatal conductance.

Abbreviations used: TR: total resin content; RR: released resin; IR: internal resin; gs: stomatal conductance; Ψleaf: midday leaf water potential.

Downloads

Download data is not yet available.

Author Biographies

Santiago Michavila Puente-Villegas, Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
Departamento de Sistemas y Recursos Naturales
Aida Rodríguez García, Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
Departamento de Sistemas y Recursos Naturales
Faustino Rubio, Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
Departamento de Sistemas y Recursos Naturales
Luis Gil, Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
Departamento de Sistemas y Recursos Naturales
Rosana Lopez, Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural. Universidad Politécnica de Madrid.
Departamento de Sistemas y Recursos Naturales

References

Bonello P, Blodgett JT, 2003. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol 63: 249-261. https://doi.org/10.1016/j.pmpp.2004.02.002

Bonello P, Gordon TR, Herms DA, Wood DL, Erbilgin N, 2006. Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiol Mol Plant Pathol 68: 95-104. https://doi.org/10.1016/j.pmpp.2006.12.002

Brown CL, Clason TR, Michael JL, 1976. Paraquat induced changes in reserve carbohydrates, fatty acids and oleoresin content of young slash pine. In: Lightwood research; Esser, M.H. (ed.). pp: 8-19. Asheville, North Caroline, USA.

Chano V, López R, Pita P, Collada C, Soto Á, 2015. Proliferation of axial parenchymatic xylem cells is a key step in wound closure of girdled stems in Pinus canariensis. BMC Plant Biol 15: 1-13. https://doi.org/10.1186/s12870-015-0447-z

da Silva K, Fett-Neto AG, 2013. Seasonality and chemical elicitation of defense oleoresin production in field-grown slash pine under subtropical climate. Theor Exp Plant Physiol 25: 56-61. https://doi.org/10.1590/S2197-00252013000100007

de Oliveira CF, Vigne Duz JV, Riffel Kerber M, Wieczorek J, Lunelli Galvan J, Palma J, Fett-Neto AG, 2019. Resinosis of young slash pine (Pinus elliottii Engelm.) as a tool for resin stimulant paste development and high yield individual selection. Ind Crops Prod 135: 179-187. https://doi.org/10.1016/j.indcrop.2019.04.048

Fett-Neto A, Rodrigues-Corrêa K, 2012. Pine resin: Biology, Chemistry and Applications. Trivandrum, Kerala, India.

Fusatto ALM, 2006. Pastas estimulantes em sistemas de resinagem de Pinus elliottii var. elliottii. Doctoral Thesis. University of São Paulo, Piracicaba, Brazil.

Gershenzon J, 1994. Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20: 1281-1328. https://doi.org/10.1007/BF02059810

Kane JM, Kolb TE, 2010. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164: 601-609. https://doi.org/10.1007/s00442-010-1683-4

Krokene P, Nagy NE, 2012. Anatomical aspects of resin-based defences in pine. Pine resin Biol Chem Appl 661: 67-86.

Lombardero MJ, Ayres MP, Lorio PL, Ruel JJ, 2000. Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecol Lett 3: 329-339. https://doi.org/10.1046/j.1461-0248.2000.00163.x

López R, Brossa R, Gil L, Pita P, 2015. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling. Front Plant Sci 6: 1-13. https://doi.org/10.3389/fpls.2015.00285

McDowell NG, Adams HD, Bailey JD, Kolb TE, 2007. The role of stand density on growth efficiency, leaf area index, and resin flow in southwestern ponderosa pine forests. Can J For Res 37: 343-355. https://doi.org/10.1139/X06-233

McReynolds RD, Kossuth SV, 1982. CEPA in sulfuric acid paste increases oleoresin yields. South J Appl For 8: 168-172. https://doi.org/10.1093/sjaf/8.3.168

Moreira X, Sampedro L, Zas R, 2009. Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. Environ Exp Bot 67: 94-100. https://doi.org/10.1016/j.envexpbot.2009.05.015

Moreira X, Sampedro L, Zas R, Solla A, 2008. Alterations of the resin canal system of Pinus pinaster seedlings after fertilization of a healthy and of a Hylobius abietis attacked stand. Trees - Struct Funct 22: 771-777. https://doi.org/10.1007/s00468-008-0237-4

Nájera F, Rifé, MP, 1953. Resinación con estimulantes químicos. Estudio general y experiencias realizadas en los pinares españoles: ácido sulfúrico. Inst For Investig y Exp Madrid, Spain.

Nájera F, 1961. Sistema de resinación de pica de corteza estimulado con ácido sulfúrico: normas de aplicación. Inst For Investig y Exp Madrid, Spain.

Nájera F, Rifé MP, 1951. Resinación con estimulantes químicos. Estudio general y experiencias realizadas en los pinares españoles: ácido clorhídrico. Inst For Investig y Exp Madrid, Spain.

Nogueira T, De Lima JC, De Costa F, Rodrigues-Corrêa KCS, Fett-Neto AG, 2016. Stimulant paste preparation and bark streak tapping technique for pine oleoresin extraction. In: Biotechnology of plant secondary metabolism: methods and protocols; Fett-Neto, A.G. (ed.) pp: 19-27. Springer Science, New York, USA. https://doi.org/10.1007/978-1-4939-3393-8_2

Perotti JC, da Silva KC, Fett-Neto AG, 2015. Control of resin production in Araucaria angustifolia, an ancient South American conifer. Plant Biol 17: 852-859. https://doi.org/10.1111/plb.12298

Ripullone F, Guerrieri MR, Nole A, Magnani F, Borghetti M, 2007. Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees - Struct Funct 21: 371-378. https://doi.org/10.1007/s00468-007-0130-6

Rodrigues KCS, Azevedo PCN, Sobreiro LE, Pelissari P, Fett-Neto AG, 2008. Oleoresin yield of Pinus elliottii plantations in a subtropical climate: effect of tree diameter, wound shape and concentration of active adjuvants in resin stimulating paste. Ind Crops Prod 27: 322-327. https://doi.org/10.1016/j.indcrop.2007.11.010

Rodrigues KCS, Fett-Neto AG, 2009. Oleoresin yield of Pinus elliottii in a subtropical climate: seasonal variation and effect of auxin and salicylic acid-based stimulant paste. Ind Crops Prod 30: 316-320. https://doi.org/10.1016/j.indcrop.2009.06.004

Rodríguez-García A, López R, Martín JA, Pinillos F, Gil L, 2014. Resin yield in Pinus pinaster is related to tree dendrometry, stand density and tapping-induced systemic changes in xylem anatomy. For Ecol Manage 313: 47-54. https://doi.org/10.1016/j.foreco.2013.10.038

Rodríguez-García A, Martín JA, López R, Mutke S, Pinillos F, Gil L, 2015. Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait . in central Spain. Agric For Meteorol 202: 83-93. https://doi.org/10.1016/j.agrformet.2014.11.023

Rodríguez-García A, Martín JA, López R, Sanz A, Gil L, 2016. Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Ind Crops Prod 86: 143-154. https://doi.org/10.1016/j.indcrop.2016.03.033

Ruel JJ, Ayres MP, Lorio PL, 1998. Loblolly pine responds to mechanical wounding with increased resin flow. Can J For Res 28: 596-602. https://doi.org/10.1139/x98-030

Shah J, 2003. The salicylic acid loop in plant defense. Curr Opin Plant Biol 6, 365-371. https://doi.org/10.1016/S1369-5266(03)00058-X

Trapp S, Croteau R, 2001. Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52, 689-724. https://doi.org/10.1146/annurev.arplant.52.1.689

Zamorano JL, Solís W, 1974. Características y utilización de la «Pasta IFIE» como estimulante de resinación. Inst For Investig y Exp Madrid, Spain.

Published
2021-02-03
How to Cite
Michavila Puente-VillegasS., Rodríguez GarcíaA., RubioF., GilL., & LopezR. (2021). Salicylic and citric acid as promising new stimulants for resin tapping in maritime pine (Pinus pinaster Ait.). Forest Systems, 29(3), eSC07. https://doi.org/10.5424/fs/2020293-16737
Section
Short communications