Vegetative propagation of Manilkara bidentata (A.DC.) A.Chev. using mini-tunnels in the Peruvian Amazon region

  • Geomar Vallejos-Torres Laboratorio de Cultivo de Tejidos Vegetales, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, (UNSM) – Tarapoto, San Martín.
  • Orlando Ríos-Ramírez Laboratorio de Cultivo de Tejidos Vegetales, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, (UNSM) – Tarapoto, San Martín.
  • Harry Saavedra Laboratorio de Cultivo de Tejidos Vegetales, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, (UNSM) – Tarapoto, San Martín.
  • Nery Gaona-Jimenez Fundo Ayabaquino. Los Olivos, Carhuapoma, Bellavista.
  • Francisco Mesén Sequeira Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Cartago.
  • César Marín Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic

Abstract

Aim of the study: Manilkara bidentata (A.DC.) A.Chev. (‘quinilla’) is a Neotropical tree highly threatened by extensive agricultural practices and climate change, resulting in a substantial reduction of natural stands and seed availability. Commercially, the propagation through seeds of this species is severely impeded by a low germination rate. Vegetative propagation could be an alternative tool for overcoming this limitation. This study aims to evaluate the vegetative propagation of M. bidentata by rooted cuttings using mini-tunnels in the Amazon.

Study area: National University of San Martín, Tarapoto, Region of San Martín, Peru. Forested areas at three localities in the Picota province and two localities in the Bellavista province, San Martín Region, were visited for the selection of plus trees and collection of epicormic shoots from stumps.

Materials and methods: the study was performed on leaf areas of 0, 50, and 100% with indole-3-butyric acid (IBA) treatments of 0, 3000, and 6000 ppm, for 9 treatments combinations. The experiment consisted of 3 mini-tunnels, with 3 growth trays established on each mini-tunnel, and 16 cuttings established on each tray (and per treatment), for a total of 144 cuttings.

Main results: after 55 days, the best scores in rooting rates (75%), number of roots (3.88), root length (3.26 cm), and budding percentage (94%) were obtained for the combination of 50% leaf area left with 3000 ppm of IBA.

Research highlights: we propose the technique of mini-tunnel as a tool for the cloning, rescue, and germplam conservation of M. bidentata.

Key words: mini-tunnel; Peruvian Amazon; quinilla; rooting; vegetative propagation.

Abbreviations used: indole-3-butyric acid (IBA).

Downloads

Download data is not yet available.

References

Ballesteros ED, Álvarez AH, 2017. Enraizamiento de esquejes de Caña Agria (Cheilocostus speciosus. J. Koenig). Rev Colomb Biotec 19: 133-139. https://doi.org/10.15446/rev.colomb.biote.v19n2.70395

Cachique D, Rodríguez del Castillo ÁM, Ruíz-Solsol H, Vallejos G, Solis R, 2011. Propagación vegetativa del sacha inchi (Plukenetia volubilis L.) mediante enraizamiento de estacas juveniles en cámaras de subirrigación en la Amazonía Peruana. Folia Amazónica 20: 95-100. https://doi.org/10.24841/fa.v20i1-2.348

Cervantes Owaki D, 2011. Propagación vegetativa de quinilla (Manilkara bidentata, A.DC.) mediante el enraizamiento de estaquillas utilizando cámara de subirrigación en el distrito de Morales provincia de San Martín. Bachelor Thesis, Universidad Nacional de San Martín-Tarapoto, Perú.

De Souza JCAV, Bender AG, Tivano JC, Barroso DG, Mroginski LA, Vegetti AC, Felker P, 2014. Rooting of Prosopis alba mini-cuttings. New Forests 45: 745-752. https://doi.org/10.1007/s11056-014-9429-5

Díaz E, 1991. Técnicas de enraizamiento de estacas juveniles de Cedrela odorata L. y Gmelina arborea Linn. Master thesis, Centro Agronómico Tropical de Investigación y Enseñanza - CATIE, San José, Costa Rica.

Gaspar T, Hofinger M, 1989, Auxin metabolism during rooting. In: Adventitious root formation in cuttings; Davis TD, Haissig BE, Sankhla N (eds). pp: 171-131. Dioscorides Press, Portland, United States.

Gimenes ES, Kielse P, Haygert KL, Fleig FD, Keathley DE, Bisognin DA, 2015. Propagation of Cabralea canjerana by mini-cutting. J Hortic For 7: 8-15.

Hartmann HT, Kester DE, 1983. Plant propagation: principles and practices, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ, United States.

Mesén F, Newton AC, Leakey RRB, 1997. The effects of propagation environment and foliar area on the rooting physiology of Cordia alliodora (Ruiz & Pavon) Oken cuttings. Trees 11: 404-411. https://doi.org/10.1007/PL00009683

Mesén F, 1998. Enraizamiento de estacas juveniles de especies forestales: uso de propagadores de sub-irrigación. Centro Agronómico Tropical de Investigación y Enseñanza - CATIE, Turrialba, Costa Rica.

Moraes CE, Fonseca RCM, Rui M, 2014. Influência das folhas no enraizamento de miniestacas de híbridos de eucalipto. Nucleus 11: 101-106. https://doi.org/10.3738/1982.2278.995

Murillo O, Rojas JL, Badilla Y, 2001. Reforestación clonal. Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.

Newton AC, Muthoka PN, Dick JM, 1992. The influence of leaf area on the rooting physiology of leafy stem cuttings of Terminalia spinosa Engl. Trees 6: 210-215. https://doi.org/10.1007/BF00224338

Reynel C, Pennington RT, Pennington TD, Flores C, Daza A, 2003. Arboles útiles de la Amazonía peruana: un manual con apuntes de identificación, ecología y propagación de las especies. Lima, Perú. 509 pp.

Rodríguez R, Avella A, 2005. Propagación y diagnóstico de regeneración natural de algunas especies maderables empleadas por la comunidad indígena de Mocagua (PNN Amacayacu. Amazonas, Colombia). Colombia Forestal 9: 34-51. https://doi.org/10.14483/udistrital.jour.colomb.for.2005.1.a03

Ruiz-Solsol H, Mesén F, 2010. Efecto del ácido indolbutírico y tipo de estaquilla en el enraizamiento de sacha inchi (Plukenetia volubilis L.). Agron Costarricense 34: 259-267. https://doi.org/10.15517/rac.v34i2.3636

Solis R, Pezo M, Diaz G, Arévalo L, Cachique D, 2017. Vegetative propagation of Plukenetia polyadenia by cuttings: effects of leaf area and indole-3-butyric acid concentration. Braz J Biol 77: 580-584. https://doi.org/10.1590/1519-6984.20415

Solis R, Gomales N, Pezo M, Arévalo L, Vallejos-Torres G, 2019. Rooting of sacha inchi (Plukenetia volubilis) juvenile cuttings in microtunnels. Acta Agron 68: 35-40. https://doi.org/10.15446/acag.v68n1.72101

Soudre M, Vidal F, Mori J, Guerra H, Mesén F, Perez F, 2010. Propagación vegetativa de marupa (Simarouba amara Aubl.) mediante enraizamiento de estacas juveniles en propagador de subirrigación. Folia Amazón 19: 61-68.

Tchoundjeu Z, Avana ML, Leakey RRB, Simons AJ, Assah E, Duguma B, Bell JM, 2002. Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agrofor Syst 54: 183-192. https://doi.org/10.1023/A:1016049004139

Uriarte M, Canham CD, Thompson J, Zimmerman JK, Brokaw N, 2005. Seedling recruitment in a hurricane‐driven tropical forest: light limitation, density‐dependence and the spatial distribution of parent trees. J Ecol 93: 291-304. https://doi.org/10.1111/j.0022-0477.2005.00984.x

Vallejos-Torres G, Gonzales-Polar LET, Arévalo-López LA, 2014. Enraizamiento de brotes de capirona Calycophyllum spruceanum (Benth.) Hook. f. ex Schum., en la amazonía peruana. Revista Forestal Mesoamericana Kurú 11: 55-59. https://doi.org/10.18845/rfmk.v11i27.1778

Vallejos-Torres G, Arévalo LA, Ríos O, Cerna A, Marín C, 2020. Propagation of rust-tolerant Coffea arabica L. plants by sprout rooting in microtunnels. J Soil Sci Plant Nutr 20: 933-940. https://doi.org/10.1007/s42729-020-00180-7

Vallejos-Torres G, Ríos-Ramírez O, Corazon-Guivin MA, Reátegui E, Mesén Sequeira F, Marín C, 2021. Effects of number of leaflets and indole-3-butyric acid dose in the vegetative propagation by mini-tunnels of the rubber tree (Hevea brasiliensis). J Rubber Res. First online. DOI: 10.1007/s42464-021-00097-5 https://doi.org/10.1007/s42464-021-00097-5

Wu CW, Lin KH, Lee MC, Peng YL, Chou TY, Chang YS, 2015. Using chlorophyll fluorescence and vegetation indices to predict the timing of nitrogen demand in Pentas lanceolata. Hortic Sci Technol 33: 845-853. https://doi.org/10.7235/hort.2015.15043

Published
2021-08-03
How to Cite
Vallejos-TorresG., Ríos-RamírezO., SaavedraH., Gaona-JimenezN., Mesén SequeiraF., & MarínC. (2021). Vegetative propagation of Manilkara bidentata (A.DC.) A.Chev. using mini-tunnels in the Peruvian Amazon region. Forest Systems, 30(2), eRC01. https://doi.org/10.5424/fs/2021302-17971
Section
Resource communications