Conflicts and future scenarios of land use in eastern Mexico

Keywords: forest, land management, Markov, MOLUSCE, Pixquiac sub-basin


Aim of study: To develop an analytical framework for analyzing and assessing the land-use changes and conflicts, based on low requirements of information and useful in developing countries. Additionally, to generate future trend and alternative scenarios to estimate the likely impacts of each use.

Area of study: The analytical framework was tested in the Pixquiac sub-basin, Veracruz, Mexico.

Material and methods: We used satellite imagery for the characterization of the study area, map algebra to determine changes in use over time and conflicts with potential uses, as well as Markov chains and cellular automata for the generation of trend scenarios.

Main results: Our framework tested to be reliable. We detected a loss of forest cover of 653.12 ha from 2002 to 2018, and 5,299 ha of land use conflict. If the trend continues, an additional 279 ha of forest cover will be lost by 2042.

Research highlights: We proposed a framework to analyze the dynamic of land use change in small watersheds where the urban use is the driving for changes to other land uses. Our method allowed capturing the transition between land uses and conflicts with the potentialities of the territory. In addition, given that most of developing countries lacks high-resolution spatial information our method would be useful for other regions of the world with similar conditions. Finally, various trend and alternative scenarios to evaluate the impact of the policies applied to the territory on land-use changes were obtained.


Download data is not yet available.

Author Biography

Gabriel Chablé-Rodríguez, Colegio de Postgraduados, Campus Montecillo, Texcoco, 56264 Mexico




Al-Juaidi A, Nassar A, Al-Juaidi O, 2018. Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci 11(24): 1-10.

Ayram CAC, Mendoza ME, Etter A, Salicrup DRP, 2017. Potential distribution of mountain cloud forest in Michoacán, Mexico: prioritization for conservation in the context of landscape connectivity. Environ Manage 60(1): 86-103.

Benítez G, Pérez A, Nava M, Equihua M, Álvarez J, 2012. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ Urban 24(1): 149-166.

Berg Å, Gärdenfors U, von Proschwitz T, 2004. Logistic regression models for predicting occurrence of terrestrial molluscs in southern Sweden - Importance of environmental data quality and model complexity. Ecography 27(1): 83-93.

Biswas M, Banerji S, Mitra D, 2019. Land-use-land-cover change detection and application of Markov model: A case study of eastern part of Kolkata. Environ Dev Sust 22(5): 4341-4360.

Brown G, Kangas K, Juutinen A, Tolvanen A, 2017. Identifying environmental and natural resource management conflict potential using participatory mapping. Soc Nat Res 30(12): 1458-1475.

Camargo C, Calderón A, Lobo J, Ovalles Y, 2020. Identificación de conflictos y propuesta de asignación de usos de la tierra en la subcuenca quebrada Mejías, municipio Antonio Pinto Salinas, estado Mérida, Venezuela. Rev Topogr Azimut 11: 46-65.

Castellanos ML, Agudelo HW, 2020. Spatial scenarios of land-use/cover change for the management and conservation of paramos and Andean forests in Boyacá, Colombia. Environ Sci Proc 3(1): 87.

CONAFOR, 2020. El sector forestal mexicano en cifras 2020. [14 Dec. 2020].

Cunha E, Santos C, Silva R, Bacani V, Pott A, 2021. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 101: 105141.

Dale VH, King AW, Mann LK, Washington-Allen RA, McCord RA, 1998. Assessing land-use impacts on natural resources. Environ Manage 22: 203-211.

Dislich C, Hettig E, Salecker J, Heinonen J, Lay J, Meyer K, Tarigan S, 2018. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs. PloS One 13(1): e0190506.

Doelman JC, Stehfest E, Tabeau A, van Meijl H, Lassaletta L, Gernaat DEHJ, et al., 2018. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environ Change 48: 119-135.

ESRI, 2011. ArcGIS Desktop Release 10. Redlands, CA Environmental Systems Research Institute.

FAO, 2020. Evaluación de los recursos forestales mundiales 2020 Informe Principal. Roma. 190 pp.

Fiuza M, Dallmeier F, Gregory T, Martinez V, Saldivar S, Benitez M, Sanchez A, 2022. Balancing multi-species connectivity and socio-economic factors to connect protected areas in the Paraguayan Atlantic Forest. Landscape Urban Plan 222: 11-17.

Foresman TW, 2000. The Baltimore-Washington regional collaboratory land-use history research program.

Froese R, Schilling J, 2019. The nexus of climate change, land use, and conflicts. Current Climate Change Reports 5: 24-35.

Galicia L, Chávez B, Kolb M, Jasso R, Rodríguez L, Solís L, Villanueva A, 2018. Perspectivas del enfoque socio ecológico en la conservación, el aprovechamiento y pago de servicios ambientales de los bosques templados de México. Madera y Bosques 24(2): 1.

García I, Martínez A, Vidriales G, 2008. Balance hidrológico de la cuenca del río Pixquiac, Informe técnico del proyecto fondo mixto. Gobierno del Estado de Veracruz. SENDAS A.C. Documento Inédito. [16 Dec 2020].

Giri S, Arbab N, Lathrop R, 2019. Assessing the potential impacts of climate and land use change on water fluxes and sediment transport in a loosely coupled system. J Hydrol 577: 123955.

González MJ, 2000. Future scenarios of land use in the California Mojave Desert. Dissertation. Forest Resources Department, Utah State Univ, Logan, UT, USA. 163 p.

Gomben P, Lilieholm R, Gonzalez-Guillen M, 2012. Impact of demographic trends on future development patterns and the loss of open space in the California Mojave Desert. Environ Manage 49: 305-324.

Gomes E, Inácio M, Bogdzevič K, Kalinauskas M, Karnauskaitė D, Pereira P, 2021. Future land use changes and its impacts on terrestrial ecosystem services: A review. Sci Total Environ 781: 146716.

Griffith D, Zamudio P, Cortés R, Cabrera J, 2017. Losing labor: Coffee, migration, and economic change in Veracruz, Mexico. Cult Agr Food Environ 39(1): 35-42.

Imhoff ML, Lawrence WT, Stutzer D, Elvidge C, 2000. Assessing the impact of urban sprawl on soil resources in the United Sates using nightime "city lights" satellite images and digital soils maps. http:/

INEGI, 2003. Conjunto de datos vectoriales de la carta de uso de suelo y vegetación escala 1:250,000 Serie III. [02 Dec 2020].

INEGI, 2017a. Conjunto de datos vectoriales de la carta de uso de suelo y vegetación escala 1:250,000 Serie VI. [19 Dec 2020].

INEGI, 2017b. Carta de usos potencial de suelo. Veracruz E14-3 escala 1:250,000. [09 Sept 2020].

IPBES, 2019, Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio ES, Settele J, Díaz S, Ngo HT (eds). IPBES Secretariat, Bonn, Germany. 1144 pp.

Jiang S, Meng J, Zhu L, 2020. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe river. Land Use Policy 97: 104773.

Keenan R, Reams G, Achard F, Freitas J, Grainer A, Lindquist E, 2015. Dynamics of global forest area: Results from the FAO Global Forest Resources assessment 2015. Forest Ecol Manage 352: 9-20.

Kim I, Arnhold S, Ahn S, Le Q, Kim S, Park S, Koellner T, 2019. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environ Model Softw: With Environ Data News 122: 103982.

Koo H, Kleemann J, Fürst C, 2020. Integrating ecosystem services into land-use modeling to assess the effects of future land-use strategies in Northern Ghana. Land 9(10): 379.

Lawrence T, Morreale S, Stedman R, 2019. Distant political-economic forces and global-to-local pathway to impacts on forests of Ejido Landscapes across Yucatán México. Land Degr Dev 30(17): 2021-2032.

Levia Jr DF, Page DR, 2000. The cluster analysis in distinguishing farmland prone to residential development: A case study of Sterling, Massachusetts. Environ Manage 25(5): 541-548.

López E, Bocco G, Mendoza M, Duhau E, 2001. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape Urban Plan 55(4): 271-285.

López S, Sáenz L, Mayer A, Muñoz L, Asbjornsen H, Berry C, et al., 2020. Land use change effects on catchment streamflow response in a humid tropical montane cloud forest region, central Veracruz, Mexico. Hydrol Proces 34(16): 3555-3570.

Luján C, Olivas M, Álvarez V, Hernández J, Castruita U, 2021. Sistema de gestión estratégica forestal participativa para el desarrollo forestal sustentable. Madera y Bosques 27(1): e2712260.

Lu X, Mao Q, Mo J, Gilliam F, Zhou G, Luo Y, Huang J, 2015. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history. Environ Sci Technol 49(7): 4072-4080.

Maizel M, White RD, Gage S, Osborne L, Root R, Stitt S, Muehlbach G, 2000. Historical interrelationships between population settlement and farmland in the conterminous United States, 1790 to1992. http:/

Maldonado González AL, González Gaudiano EJ, Cruz Sánchez GE, 2017. Una aproximación a la representación del cambio climático en habitantes de dos cuencas del estado de Veracruz, México. Revista Pueblos y Fronteras Digital 12(23): 149-174.

Meyfroidt P, Chowdhury R, de Bremond A, Ellis E, Erb KH, Filavota T, et al., 2018. Middle-range theories of land system change. Global Environ Change 53: 52-67.

Mohamed A, Worku H, 2020. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate 31: 100545.

Mokondoko P, Manson RH, Ricketts TH, Geissert D, 2018. Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services. PLoS One 13(2): e0192560.

MOLUSCE, 2017. Plugin provides a set of algorithms for land use change simulations such as ANN, LR, WoE, MCE as well as validation using kappa statistics. Modules for Land Use Change Simulations, developed by Asia Air Survey and NextGIS.

Nava M, Selfa T, Cordoba D, Pischke E, Torrez D, Ávila-Foucat S, et al., 2018. Decentralizing payments for hydrological services programs in Veracruz, Mexico: Challenges and implications for long-term sustainability. Soc Nat Resour 31(12): 1389-1399.

Pineda R, Ortiz G, Sánchez L, 2016. Los cafetales y su papel en la captura de carbono: Un servicio ambiental aún no valorado en Veracruz. Madera y Bosques 11(2): 3-14., 2022. QGIS Geographic Information System. QGIS Association.

Rahman S, Sunderland T, Kshatriya M, Roshetko J, Pagella T, Healey J, 2016. Towards productive landscapes: Trade-offs in tree-cover and income across a matrix of smallholder agricultural land-use systems. Land Use Policy 8: 152-164.

Rodríguez K, Merino L, 2017. Contextualizing context in the analysis of payment for ecosystem services. Ecosyst Serv 23: 259-267.

Roodposhti MS, Aryal J, Bryan BA, 2019. A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environ Model Softw 112: 70-81.

Rosa-da Conceição H, Börner J, Wunder S, 2018. REDD+ as a public policy dilemma: understanding conflict and cooperation in the design of conservation incentives. Forests 9(11): 725.

Ruiz Duran ME, Orozco Hernández ME, Granados Ramírez GR, Álvarez Arteaga G, 2017. Cambio de uso de suelo e índice de vegetación de diferencia normalizada (NDVI), Subcuenca del río Salado, México. Geografía y Sistemas de Información Geográfica 9(9): 39-50.

SADER, 2021. Programas para el campo. Secretaría de Agricultura y Desarrollo Rural. [05 Jan 2021].

Schober P, Boer C, Schwarte LA, 2018. Correlation coefficients: appropriate use and interpretation. Anesth Analg 126(5): 1763-1768.

Sulieman H, 2018. Exploring drivers of forest degradation and fragmentation in Sudan: The case of Erawashda forest and its surrounding community. Sci Total Environ 621: 895-904.

Shahbazian Z, Faramarzi M, Rostami N, Mahdizadeh H, 2019. Integrating logistic regression and cellular automata-Markov models with the experts' perceptions for detecting and simulating land use changes and their driving forces. Environ Monit Asses 191(7): 1-17.

Thiébaut V, Velázquez E, 2017. Entre la agricultura y el trabajo urbano: dos estudios de caso en la periferia de Xalapa, una ciudad media del estado de Veracruz (México). LiminaR Estudios Sociales y Humanísticos 15(1): 142-162.

Trisurat Y, Eawpanich P, Kalliola R, 2016. Integrating land use and climate change scenarios and models into assessment of forested watershed services in southern Thailand. Environ Res 147: 611-620.

Vargas A, 2018. Ganadería en zonas de amortiguamiento en Chiapas, México: análisis de los capitales de la comunidad. Agricultura, Sociedad y Desarrollo 15(4): 565-583.

Velázquez E, López PC, 2021. La propiedad ejidal de la tierra en contextos de rururbanización en México: sus desafíos y oportunidades en una ciudad media (Xalapa, Veracruz). Historia Agraria de América Latina 2(01): 174-196.

Voinov A, Costanza R, Maxwell T, Vladich H, 2007. Patuxent Landscape Model: 4. Model Application. Water Resour 34(5): 501-510.

Waddell P, 2002. UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Plann Assoc 68(3): 297-314.

Wang J, Lin Y, Zhai T, He T, Qi Y, Jin Z, Cai Y, 2018. The role of human activity in decreasing ecologically sound land use in China. Land Degr Dev 29(3): 446-460.

Wu H, Li Z, Clarke K, Shi W, Fang L, Lin A, Zhou J, 2019. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. Int J Geograph Inform Sci 33(5): 1040-1061.

Wu Z, Dai E, Wu Z, Lin M, 2019. Future forest dynamics under climate change, land use change, and harvest in subtropical forests in southern China. Landscape Ecol 34(4): 843-863.

How to Cite
Chablé-RodríguezG., González-GuillénM. J., González-MartínezT. M., Gómez-GuerreroA., & Fernández-ReynosoD. S. (2022). Conflicts and future scenarios of land use in eastern Mexico. Forest Systems, 31(3), e018.
Research Articles