VIS/NIR spectra and color parameters according to leaf age of some Eucalyptus species: influence on their classification and discrimination

Keywords: visible spectra, near infrared spectra, species identification, green leaves, multivariate analysis, chromatic coordinates

Abstract

Aim of study: The aim of this study was to verify the differences in VIS/NIR spectra and leaf color parameters of leaves of Eucalyptus badjensis, E. benthamii, E. dunnii, E. grandis, E. globulus and E. saligna, at four ages, and their influence on species discrimination.

Area of study: São Mateus do Sul, Paraná, Brazil.

          Material and methods: Seedlings of the six species, with four replicates for each, were acclimatized in the same environment, in October 2015, in an entirely randomized design. Leaf samples were collected from plants that were 6, 8, 10 and 12 months old. Three leaves from each of four plants at each age were analyzed. Five parameters were recorded referring to the adaxial surface of each leaf, with a total of 15 records from repetitions and 60 per species at each age. The evaluation was performed in the spectral ranges from 360-740 nm (VIS) and 1000-2500 nm (NIR). Principal component analysis and linear discriminant analysis were performed.

Main results: The influence of age differed within each species. In color data, the parameter with most variation among all samples was chromatic coordinate b*. In reflectance spectra (VIS), age of 12 months provided the best discrimination of species. Second derivative NIR spectra produced the best results of external prediction of Linear Discriminant Analysis models based on leaves of 12-month-old trees.

Research highlights: Observation of color parameters and VIS/NIR spectroscopy have potential utility for discrimination of Eucalyptus species based on their green leaves.

Downloads

Download data is not yet available.

References

Abasolo M, Lee DJ, Raymond C, Meder R, Shepherd M, 2013. Deviant near-infrared spectra identifies Corymbia hybrids. Forest Ecol Manag 304: 121-131. https://doi.org/10.1016/j.foreco.2013.04.040

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G, 2013. Köppen's climate classification map for Brazil. Meteorol Z 22(6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Alwil A, Meder R, JaparudinY, Hamid HA, Sanusi R, Mohd Yusoff KH, 2021. Near infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots. J Near Infrared Spec 29(3): 158-167. https://doi.org/10.1177/09670335211007971

Au J, Youngento KN, Foley WJ, Moore BD, Fearn T, 2020. Sample selection, calibration and validation of models developed from a large dataset of near infrared spectra of tree leaves. J Near Infrared Spec 28(4): 186-203. https://doi.org/10.1177/0967033520902536

Ballesta P, Ahmar S, Lobos GA, Mieres-Castro D, Jiménez-Aspee F, Mora-Poblete F, 2022. Heritable variation of foliar spectral reflectance enhances genomic prediction of hydrogen cyanide in a genetically structured population of eucalyptus. Front Plant Sci 13: 871943. https://doi.org/10.3389/fpls.2022.871943

Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C et al., 2013. Chloroplast genome analysis of Australian eucalypts - Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol 69: 704-716. https://doi.org/10.1016/j.ympev.2013.07.006

Carter GA, Knapp AK, 2001. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88(4): 677-684. https://doi.org/10.2307/2657068

Castillo R, Contreras D, Freer J, Ruiz J, Valenzuela S, 2008. Supervised pattern recognition techniques for classification of Eucalyptus species from leaves NIR spectra. J Chil Chem Soc 53(4): 1709-1713. https://doi.org/10.4067/S0717-97072008000400016

Cozzolino D, 2014. Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data analysis, and examples. Appl Spectrosc Rev 49(7): 564-584. https://doi.org/10.1080/05704928.2013.878720

Da Silva Junior CA, Teodoro PE, Teodoro LPR, Della-Silva JL, Shiratsuchi LS, Baio FHR et al., 2021. Is it possible to detect boron deficiency in eucalyptus using hyper and multispectral sensors? Infrared Phys Technol 116: 103810. https://doi.org/10.1016/j.infrared.2021.103810

Diniz CP, Grattapaglia D, Mansfield SD, Figueiredo LFA, 2019. Near infrared based models for lignin syringyl/guaiacyl ratio of Eucalyptus benthamii and E. pellita using a streamlined thioacidolysis procedure as the reference method. Wood Sci Technol 53: 521-533. https://doi.org/10.1007/s00226-019-01090-3

Durgante FM, Higuchi N, Almeida A, Vicentini A, 2013. Species spectral signature: discriminating closely related plant species in the Amazon with near-infrared leaf-spectroscopy. Forest Ecol Manag 209: 240-248. https://doi.org/10.1016/j.foreco.2012.10.045

Estopa RA, Milagres FR, Oliveira RA, Hein PRG, 2017. NIR spectroscopic models for phenotyping wood traits in breeding programs of Eucalyptus benthamii. Cerne 22(3): 367-375. https://doi.org/10.1590/01047760201723032319

Féret JB, François C, Gitelson A, Asner GP, Barry KM, Panigada C et al., 2011. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens Environ 115: 2742-2750. https://doi.org/10.1016/j.rse.2011.06.016

Flores TB, Alvares CA, Souza VC, Stape JL, 2016. Eucalyptus no Brasil: Zoneamento climático e guia para identificação. IPEF, Piracicaba, São Paulo. 447 pp.

Frizon CNT, Nisgoski S, 2020. Color parameters to predict moisture and tannin content in yerba mate process. Floresta e Ambiente 27(2): e20180098. https://doi.org/10.1590/2179-8087.009818

Hein PRG, Chaix G, 2014. NIR spectral heritability: a promising tool for wood breeders? J Near Infrared Spec 22: 141-147. https://doi.org/10.1255/jnirs.1108

Herraiz-Peñalver D, Elguea-Culebras GO, Sánchez-Vioque S, Méridas OS, 2015. Identification of a hybrid species of sage (Salvia officinalis L. x S. lavandulifolia subsp. lavandulifolia) through the study of the essential oil. J Essent Oil Res 27(5): 363-372. https://doi.org/10.1080/10412905.2015.1031918

Herrera A, Lima N, Silva I, Oliveira R, Silva E, Marangon G, Pereira R, 2017. Spectroradiometry from Eucalyptus grandis W. Hill ex Maiden population with different ages. Aust J Basic Appl Sci 11(15): 47-53. https://doi.org/10.22587/ajbas.2017.11.15.7

Homolovà L, Malenovsky Z, Clevers JGPW, García-Santos G, Schaepman ME, 2013. Review of optical-based remote sensing for plant trait mapping. Ecol Complex 15: 1-16. https://doi.org/10.1016/j.ecocom.2013.06.003

Humphreys JR, O'Reilly-Wapstra JM, Harbard JL, Davies NW, Griffin AR, Jordan GJ, Potts BM, 2008. Discrimination between seedlings of Eucalyptus globulus, E. nitens and their F1 hybrid using near-infrared reflectance spectroscopy and foliar oil content. Silvae Genetica 57: 4-5. https://doi.org/10.1515/sg-2008-0040

IBÁ, 2020. Indústria brasileira de árvores - Relatório anual 2020. http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2020.pdf [5 Oct 2020].

Jin X, Shi C, Yu CY, Yamada T, Sacks EJ, 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus. Front Plant Sci 8: 721. https://doi.org/10.3389/fpls.2017.00721

Judzentiene A, Stoncius A, Budiene J, 2015. Chemical composition of the essential oils from Glechoma hederacea plants grown under controlled environmental conditions in Lithuania. J Essent Oil Res 27(5): 454-458. https://doi.org/10.1080/10412905.2015.1039663

Lang C, Costa FRC, Camargo JLC, Durgante FM, Vicentini A, 2015. Near infrared spectroscopy facilitates rapid identification of both young and mature Amazonian tree species. PLoS ONE 10(8): e0134521. https://doi.org/10.1371/journal.pone.0134521

Li Y, Sun Y, Jiang J, Liu J, 2019. Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods 15: 73. https://doi.org/10.1186/s13007-019-0458-0

Lima BM, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D, 2019. Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 14(6): e0218747. https://doi.org/10.1371/journal.pone.0218747

Lin KH, Huang MY, Hsu MH, 2021. Morphological and physiological response in green and purple basil plants (Ocimum basilicum) under different proportions of red, green, and blue LED lightings. Scient Hortic 275: 109677. https://doi.org/10.1016/j.scienta.2020.109677

Lohr D, Tillmann P, Druege U, Zerche S, Rath T, Meinken E, 2017. Non-destructive determination of carbohydrate reserves in leaves of ornamental cuttings by near-infrared spectroscopy (NIRS) as a key indicator for quality assessments. Biosyst Eng 158: 51-63. https://doi.org/10.1016/j.biosystemseng.2017.03.005

Lorens-Molina JA, Vacas S, 2015. Seasonal variations in essential oil of aerial parts and roots of an Artemisia absinthium L. population from a Spanish area with supramediterranean climate (Teruel, Spain). J Essent Oil Res 27(5): 395-405. https://doi.org/10.1080/10412905.2015.1043400

Lu W, Arnold RJ, Wang C, Lin Y, Luo J, Meder R, Yang Y, 2021. Defining Eucalyptus urophylla with its hybrid and the rules of genetic recombination using near infrared spectroscopy. J Near Infrared Spec 29(4): 236-244. https://doi.org/10.1177/09670335211008257

Meder R, Kain D, Ebdon N, MacDonell P, Brawner JT, 2014. Identifying hybridization in Pinus species using near infrared spectroscopy of foliage. J Near Infrared Spec 22(5): 337-345. https://doi.org/10.1255/jnirs.1127

Mees C, Souard F, Delporte C, Deconinck E, Stoffelen P, Stévigny C et al., 2018. Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta 177: 4-11. https://doi.org/10.1016/j.talanta.2017.09.056

Mendes RAG. 2014. Utilização da espectroscopia em reflectância no infravermelho próximo para discriminação de espécies da família Myrtaceae. Dissertação, Universidade de Brasília. 85f.

Migacz IP, Raeski PAR, Almeida VPA, Raman V, Nisgoski S, Muñiz GIB et al., 2018. Comparative leaf morpho-anatomy of six species of Eucalyptus cultivated in Brazil. Rev Bras Farmacogn 28(3): 273-281. https://doi.org/10.1016/j.bjp.2018.04.006

Nisgoski S, Carneiro ME, Lengowski EC, Schardosin FZ, De Muñiz GIB, 2015. Potential use of visible and near-infrared spectroscopy for pine species discrimination by examination of needles. South For 77: 243-247. https://doi.org/10.2989/20702620.2015.1052947

O'Reilly-Wapstra JM, Freeman JS, Barbour R, Vaillancourt RE, Potts BM, 2013. Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species. Tree Genet Gen 9: 943-959. https://doi.org/10.1007/s11295-013-0607-y

Peñuelas J, Filella I, 1998. Visible and near infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3(4): 151-156. https://doi.org/10.1016/S1360-1385(98)01213-8

Richardson AD, Reeves JB, Gregoire TG, 2003. Multivariate analyses of visible/near infrared (VIS/NIR) absorbance spectra reveal underlying spectral differences among dried, ground conifer needle sample from different growth environments. New Phyt 161: 291-301. https://doi.org/10.1046/j.1469-8137.2003.00913.x

Saulle CC, Raman V, Oliveira AVG, Maia BHLNS, Meneghetti EK, Flores TB, et al., 2018. Anatomy and volatile oil chemistry of Eucalyptus saligna cultivated in South Brazil. Rev Bras Farmacogn 28: 125-134. https://doi.org/10.1016/j.bjp.2018.03.001

Serbin SP, Dillaway DN, Kruger EL, Townsend PA, 2012. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J Exp Bot 63(1): 489-502. https://doi.org/10.1093/jxb/err294

Schenk JS, Workman Jr. JJ, Westerhaus MO, 2008. Application of NIR spectroscopy to agricultural products. In: Handbook of Near-Infrared Analysis, 3rd Ed.; Burns DA, Ciurczak EW (eds). CRC Press, Boca Raton, FL, USA, pp: 347-386.

Schwanninger M, Rodrigues JC, Fackler K, 2011. A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spec 19: 287-308. https://doi.org/10.1255/jnirs.955

Shimbori C, Kurata Y, 2017. Nondestructive measurement of water content in hardwood leaves using near-infrared spectroscopy. Bioresources 12(4): 9244-9252.

Silva ALD da, Filho EGA, Silva LMA, Tavares OCH, Pereira MG, Campos T, Silva LM da, 2021. Near infrared spectroscopy to rapid assess the rubber tree clone and the influence of maturation and disease at the leaves. Microchem J 168: 106478. https://doi.org/10.1016/j.microc.2021.106478

Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM, 2011. Genetic variation in the chemical components of Eucalyptus globulus wood. G3-Genes, Genomes, Genetics 1: 151-159. https://doi.org/10.1534/g3.111.000372

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, et al., 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59: 206-224. https://doi.org/10.1016/j.ympev.2011.02.003

Tang R, Chen S, Li C, 2018. Detection of nitrogen content in rubber leaves using near-infrared (NIR) spectroscopy with correlation-based successive projections algorithm (SPA). Appl Spec 72(5): 740-749. https://doi.org/10.1177/0003702818755142

Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P, 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113: S67-S77. https://doi.org/10.1016/j.rse.2008.10.019

Published
2022-06-28
How to Cite
MigaczI. P., ManfronJ., FaragoP. V., RamanV., de MuñizG. I. B., & NisgoskiS. (2022). VIS/NIR spectra and color parameters according to leaf age of some Eucalyptus species: influence on their classification and discrimination. Forest Systems, 31(2), e013. https://doi.org/10.5424/fs/2022312-19242
Section
Research Articles