Simulation tools for decision support to adaptive forest management in Europe

  • Bart Muys Division Forest, Nature and Landscape, Katholieke Universiteit Leuven
  • Jari Hynynen Finnish Forest Research Institute (METLA)
  • Marc Palahi European Forest Institute, Mediterranean Regional Office (EFIMED)
  • Manfred J. Lexer Institute of Siviculture, University of Natural Resources and Applied Life Sciences Vienna (BOKU)
  • Marek Fabrika Faculty of Forestry, Technical University Zvolen
  • Hans Pretzsch Chair of Forest Yield Science, Technische Universität München
  • François Gillet Ecological Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne; UMR Chrono-environnement, Université de Franche-Comté - CNRS
  • Elemer Briceño Department of Forest Sciences, University of Helsinki
  • Gert-Jan Nabuurs European Forest Institute (EFI)
  • Vincent Kint Division Forest, Nature and Landscape, Katholieke Universiteit Leuven
Keywords: multi-objective forest planning, forest model, simulator, decision support system, climate change


In forest management there is a tendency towards measuring less and simulating more. In this context the development of reliable, user friendly forest simulators has become economically relevant. The objective of this perspective paper is to highlight the recent trends in forest simulation and to identify the remaining challenges to make forest simulation a reliable tool for forest policy and management. Experiences with forest simulators for various purposes in different geographical contexts illustrate how the important challenges of forest decision support can be addressed through flexible customization for different end-user categories, offering spatially explicit approaches at the landscape scale, and integrating empirical and mechanistic models in hybrid and bayesian simulation approaches. Recent development trends in forest simulation for decision support are mainly related to the ever increasing calculation speed and capacity of computers, facilitating the development of robust tools with comfortable user interface and realistic functions and options. Another trend is the combination of simulation tools with optimization and choice algorithms fading away the difference between simulators and decision support systems. The remaining challenges are basically in the high expectations of stakeholders concerning the ability of simulators to predict a range of outcomes in terms of ecosystem services and sustainability indicators, as well as the quality of their outcome in terms of output credibility to stakeholders. Need for accepted and realistic model validation and verification methods preferably using empirical data is crucial in this matter.


Download data is not yet available.


Borges J.G., Hoganson H.M., Falcão A.O., 2002. Heuristics in multi-objective forest management. In: multi-objective forest planning, managing forest ecosystems (Pukkala T., ed). Kluwer Academic Publishers, Vol. 5. pp. 119-152.

Calama R., Tomé M., Sánchez-González M., Miina J., Spanos K., Palahí M., 2010. Modelling non-wood forest products in Europe: a review. Forest Systems 19(SI), 69-85.

Chertov O.G., Komarov A.S., 2001. ROMUL-a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecological Modelling 138, 289-308.

Churkina G., Tenhunen J., Thornton P., Falge E.M., Elbers J.A., Erhard M., Grunwald T., Kowalski A.S., Sprinz D., 2003. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6, 168-184.

Deckmyn G., Verbeeck H., Op De Beeck M., Vansteenkiste D., Steppe K., Ceulemans R., 2008. Anafore: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modeling 215, 345-368.

Deckmyn G., Mali B., Kraigher H., Torelli N., Op De Beeck M., Ceulemans R., 2009. Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica 43, 523-534.

Elemans M., Heil G.W., 2007. Effects of light and N availability in forests on plant species diversity in the field layer: a plant ecological and modelling approach. In: Environmental effects of afforestation in North-Western Europe: from field observations to decision support (Heil G.W., Muys B., Hansen K., eds). Springer Publ, Series Plant and Vegetation. Vol. 1. pp. 129-148.

Etienne M. (ed), 1996. Western European silvopastoral systems. INRA Editions, Science Update series, Paris.

Fabrika M., 2003. Virtual forest stand as a component of sophisticated forestry educational systems. Journal of Forest Science 49, 419-428.

Fabrika M., 2007a. Implementation of GIS and model SIBYLA in a spatial decision support system for forest management. In: Global change issues in developing and emerging countries (Kappa M., Kleinn C.H., Sloboda B., eds). Proceedings of the 2nd Göttingen GIS and Remote Sensing Days 2006, 4th to 6th October, Göttingen, Germany. Universitätsverlag Göttingen. pp. 61-72.

Fabrika M., 2007b. Desktop and web-based simulator for forestry training in e-learning. In: Proceedings of 41th Spring International Conference MOSIS '07 – Modelling and Simulation of Systems, April 24-26, 2007, Rožnov pod Radhoštěm. pp.128-135.

Fabrika M., Dursky J., 2006. Implementing tree growth models in Slovakia, In: Sustainable forest management. Growth models for Europe (Hasenauer H., et al., eds). Springer, Berlin, Heidelberg, New York. pp. 315-341.

García-Gonzalo J., Jäger D., Lexer M.J., Peltola H., Briceño-Elizondo E., Kellomäki S., 2008. Does climate change affect optimal planning solutions for multi-objective forest management? Allgemeine Forst- u Jagdzeitung 179, 77-94.

García-Quijano J.F., Deckmyn G., Moons E., Proost S., Ceulemans R., Muys B., 2005. An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. Forest Ecology and Management 207, 245-262.

Gillet F., 2008. Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes. Ecological Modelling 217, 1-18.

Gilliams S., Van Orshoven J., Muys B., Kros H., Heil G.W., Van Deursen W., 2005. Afforest sDSS: a metamodel based spatial decision support system for afforestation of agricultural land. New Forests 30, 33-53.

Harper G., O'neill M., Fielder P., Newsome T., Delong C., 2009. Lodgepole pine growth as a function of competition and canopy light environment within aspen dominated mixedwoods of central interior British Columbia. Forest Ecology and Management 257, 1829-1838.

Heil G.W., Hansen K., Muys B., Van Orshoven J., 2007a. Demand for afforestation management in northwestern Europe. In: Environmental effects of afforestation in North-Western Europe: from field observations to decision support (Heil G.W., Muys B., Hansen K., eds). Springer Publ, Series Plant and Vegetation. Vol. 1. pp. 1-18.

Heil G.W., Van Deursen W., Elemans M., Mol J., Kros H., 2007b. Modelling the afforested system: the forest/tree model. In: Environmental effects of afforestation in North-Western Europe: from field observations to decision support (Heil G.W., Muys B., Hansen K., eds). Springer Publ, Series Plant and Vegetation. Vol. 1. pp. 149-174.

Holvoet B., Muys B., 2004. Sustainable forest management worldwide: a comparative assessment of standards. International Forestry Review 6, 99-122.

Hughes J.K., Valdes P.J., Betts R.A., 2006. Dynamics of a global-scale vegetation model. Ecological Modelling 198, 452-462.

Hummel S., Cunningham P., 2006. Estimating variation in a landscape simulation of forest structure. Forest Ecology and Management 228, 135-144.

Hynynen J., Ojansuu R., Hökkä H., Siipilehto J., Salminen H., Haapala P., 2002. Models for predicting stand development in MELA system. Finnish Forest Research Institute, Research Papers 835, 116 pp.

Kangas J., Kangas A., 2002. Multiple criteria decision support methods in forest management. An overview and comparative analysis. In: Multi-objective forest planning (Pukkala T., ed). Kluwer, Dordrecht. pp. 37-70.

Kellomäki S., Väisänen H., Strandman H., 1993. FinnFor: a model for calculating the response of boreal forest ecosystem to climate change. University of Joensuu, Faculty of Forestry, Research Note 6, pp. 1-120.

Kint V., Lasch P., Lindner M., Muys B., 2009. Multipurpose conversion management of Scopts pine towards mixed oak-birch stands – A long-term simulation approach. Forest Ecology and Management 257, 199-214.

Kirschbaum M.U.F., 1999. CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling 118, 17-59.

Kozak A., Kozak R., 2003. Does cross-validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research, 33, 976-987.

Kramer K., Buitenveld J., Forstreuter M., Geburek T., Leonardi S., Menozzi P., Povillon F., Schelhaas M.J., Teissier Du Cros E., Vandramin G.G., Van Der Werf D.C., 2008. Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech. Ecological Modelling 216, 333-353.

Kros J., 2002. Evaluation of biogeochemical models at local and regional scale. Doctoral thesis Landbouw en Milieuwetenschappen, Wageningen Universiteit (Netherlands).

Kurttila M., 2001. The spatial structure of forests in the optimization calculations of forest planning - a landscape ecological perspective. Forest Ecology & Management 142, 127-140.

Lexer M.J., Vacik H., Palmetzhofer D., Oitzinger G., 2005. A decision support tool to improve forestry extension services for small private landowners in southern Austria. Computers and Electronics in Agriculture 49, 81-102.

Lexer M.J., SEIDL R., 2009. Addressing biodiversity in a stakeholder-driven climate change vulnerability assessment of forest management. Forest Ecology & Management 258, 158-167.

Maggini R., Lehmann A., Zimmermann N.E., Guisan A., 2006. Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography 33, 1729-1749.

Mäkelä A., Grace J.C., Deckmyn G., Kantola A., Campioli M., 2010. Simulating wood quality in forest management models. Forest Systems 19(SI), 48-68.

Matala J., Ojansuu R., Peltola H., Raitio H., Kellomäki S., 2006. Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecological Modelling 199, 39-52.

Matala J., Ojansuu R., Peltola H., Sievänen R., Kellomäki S., 2005. Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecological Modelling 181, 173-190.

MCPFE, 1998. Third Ministerial Conference on the Protection of Forests in Europe. Resolution L2 Pan-European Criteria, Indicators and Operational Level Guidelines for Sustainable Forest Management. In, Lisbon/Portugal, 3 pp.

MCPFE, 2002. Improved Pan-European indicators for sustainable forest management; as adopted by the 7-8 October 2002. Expert Level Meeting, Vienna, Austria.

Mendoza G.A., Song B., Mladenoff D.J., 2006. Visualization with spatial data. In: Computer applications in sustainable forest management including perspectives on collaboration and integration (Shao G., Reynolds K.M., eds). pp. 127-142.

Merganicova K., Pietsch S.S., Hasenauer H., 2005. Testing mechanistic modeling to assess impacts of biomass removal. Forest Ecology and Management 207, 37-57.

Mol Dijkstra J.P., Reinds G.J., Kros H., Berg B., De Vries W., 2009. Modelling soil carbon sequestration of intensively monitored forest plots in Europe by three different approaches. Forest Ecology and Management 258, 1780-1793.

Nabuurs G., Pussinen A., Van Brusselen J., Schelhaas M., 2006. Future harvesting pressure on European forests. European Journal of Forest Research 126, 391-400.

Palahí M., Pukkala T., Pérez E., Trasobares A., 2004. Herramientas de soporte a la decisión en la planificación forestal. Revista forestal MONTES 78- IV Trimestre, p. 40.

Peng C., Wen W., 2006. Forest simulation models. In: Computer applications in sustainable forest management including perspectives on collaboration and integration (Shao G., Reynolds K.M., eds). pp. 101-125.

Pennanen J., Kuuluvainen T., 2007. A spatial simulation approach to natural forest landscape dynamics in boreal Fennoscandia. Forest Ecology and Management 164, 157-175.

Pinjuv G.L., Mason E.G., Watt M., 2006. Quantitative validation and comparison of a range of forest growth model types. Forest Ecology and Management 236, 37-46.

Popp J., Hoag D., Hyatt D.E., 2001. Sustainability indices with multiple objectives. Ecological Indicators 1, 37-47.

Pretzsch H., Biber P., Ďurs, Ky´ J., 2002. The single tree based stand simulator SILVA. Construction, application and evaluation. Forest Ecology and Management 162, 3-21.

Pretzsch H., Biber P., Ďurs, Ky´ J., Von Gadow K., Hasenauer H., Kändler G., Kenk G., Kublin E., Nagel J., Pukkala T., Skovsgaard J.P., Sodtke R., Sterba H., 2002. Recommendations for standardized documentation and further development of forest growth simulators. Forstwissenschaftliches Centralblatt 121, 138-151.

Pretzsch H., Grote R., Reineking B., Rötzer T., Seifert S., 2008. Models for forest ecosystem management: a European perspective. Annals of Botany 101, 1065-1087.
PMid:17954471 PMCid:2710278

Pretzsch H, Seifert S., 1999. Wissenschaftliche Visualisierung des Waldwachstums. Allgemeine Forstzeitschrift 54, 960-962.

Pukkala T., 2002. Introduction to multi-objective forest planning. In: Multi-objective forest planning (Pukkala T., ed). Kluwer, Dordrecht. pp. 1-19.

Pukkala T., 2003. Monte, calculation and planning program for even-aged and uneven-aged forests of Catalonia. User's guide. Joensuu.

Radtke P.J., Amateis R.L., Prisley S.P., Copenheaver C.A., Chojnacky D.C., Pittman J.R., Burkhart H.E., 2009. Modeling production and decay of coarse woody debris in loblolly pine plantations. Forest Ecology and Management 257, 790-799.

Rauscher M., 1999. Ecosystem management decision support for federal forests in the United States: a review. Forest Ecology and Management 114, 173-197.

Reynolds K.M., Borges J.G., Vacik H., Lexer M.J., 2005. ICT in forest management and conservation. In: Information technology and the forest sector (Hetemäki L., Nilsson S., eds). IUFRO World Series. Vol. 18, pp. 150-171.

Reynolds K.M., Schmoldt D.L., 2006. Computeraided decision making. In: Computer applications in sustainable forest management including perspectives on collaboration and integration (Shao G., Reynolds K.M., eds). pp. 143-169.

Rigueiro-Rodríguez A., Mcadam J., Mosqueralosada M.R. (Eds), 2009. Agroforestry in Europe: current status and future prospects. Springer, Advances in Agroforestry series.

Rykiel E.J., 1996. Testing ecological models: the meaning of validation. Ecological Modelling 90, 229-244.

Saltelli A., Chan K., Scott E.M., 2000. Sensitivity analysis. John Wiley & Sons. 475 pp.

Schelhaas M.-J., Eggers-Meyer J., Lindner M., Nabuurs G.-J., Päivinen R., Schuck A., Verkerk P.J., Van Der Werf D.C., Zudin S., 2007. Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3). Alterra report 1559 and EFI technical report 26. Alterra and European Forest Institute Wageningen and Joensuu. 118 pp.

Seidl R., Lexer M.J., Jäger D., Hönninger K., 2005. Evaluating the accuracy and generality of a hybrid patch model. Tree Physiology 25, 939-951.

Seifert S., 2006. Visualisierung von Waldlandschaften. Allgemeine Forstzeitschrift 61, 1170-1171.

Seifert S., 2008. Modellierung und Visualisierung des Waldwachstums auf Landschaftsebene. PhD thesis. Univ Göttingen, Dep Ökoinformatik, Biometrie und Waldwachstum, Göttingen. 120 pp.

Soares P., Tomé M., Skovsgaard J.P., Vanclay J.K., 1995. Evaluating a growth model for forest management using continuous forest inventory data. Forest Ecology and Management 71, 251-265.

Sodtke R., Schmidt M., Fabrika M., Nagel J., Dursky, J., Pretzsch H., 2004. Anwendung und Einsatz von Einzelbaummodellen als Komponenten von entscheidungsunterstützenden Systemen für die strategische Forstbetriebsplannung. Forstarchiv 75, 51-64.

Surovy P., Fabrika M., Daenner M, Schulz R., Lanwert D., Sloboda B., 2007. Kartografer-tool for supporting the management of forest landscape linking GIS and an individual tree growth simulator. In: Global change issues in developing and emerging countries (Kappas M., Kleinn C.H., Sloboda B, eds). Proceedings of the 2nd Göttingen GIS and Remote Sensing Days 2006, 4th to 6th October, Göttingen, Germany, Universitätsverlag Göttingen. pp. 51-59.

Stone M., 1994. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, series B 36, 111-147.

Teixeira A.M.G., Soares-Filho B.S., Freitas S.R., Metzger J.P., 2009. Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. Forest Ecology and Management 257, 1219-1230.

Twery M.J., Knopp P.D., Thomasma S.A., Rauscher H.M., Nute D.E., Potter W.D., Maier F., Wang J., Dass M., Uchiyama H., Glende G., Hoffman R.E., 2005. NED-2: a decision support system for integrated forest ecosystem management. Computers and Electronics in Agriculture 49, 24-43.

Vacik H., Wolfslehner B., Seidl R., Lexer M.J., 2007. Integrating the DPSIR approach and the analytic network process for the assessment of forest management strategies. In: Sustainable forestry: from monitoring and modelling to knowledge management and policy science (Reynolds K., Rennolls K., Köhl M., Thomson A., Shannon M., Ray D., eds). CAB International, Cambridge. pp. 393-411.

Valentine H.T., Mäkelä A., 2005. Bridging processbased and empirical approaches to modeling tree growth. Tree Physiology 25, 769-779.

Van Deursen W., Mol J., Heil G.W., Kros H., 2007. Metafore: the Afforest deposition-soil-water-vegetation metamodel. In: Environmental effects of afforestation in North-Western Europe: from field observations to decision support (Heil G.W., Muys B., Hansen K., eds). Springer Publ, Series Plant and Vegetation. Vol. 1. pp. 203-225.

Van Oijen M., Rougier J., Smith R., 2005. Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiology 25, 915-927.

Von Gadow K., Pukkala T. (eds). 2008. Designing green landscapes. Springer, The Netherlands. 290 pp.

Weishampel P., Kolka R., King J.Y., 2009. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. Forest Ecology and Management 257, 747-754.

Wintle B.A., Lindenmayer D.B., 2008. Adaptive risk management for certifiably sustainable forestry. Forest Ecology and Management 256, 1311-1319.

How to Cite
MuysB., HynynenJ., PalahiM., LexerM. J., FabrikaM., PretzschH., GilletF., BriceñoE., NabuursG.-J., & KintV. (2010). Simulation tools for decision support to adaptive forest management in Europe. Forest Systems, 19, 86-99.