How much carbon do Argentine Pampas Pinus radiata plantations store?

  • Paula FERRERE Agencia de Extensión Rural 9 de Julio, EEA Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA). Av. Bme. Mitre 857, 9 de Julio, Buenos Aires, Argentina
  • Ana M. LUPI Instituto de Suelos, Centro de Investigaciones en Recursos Naturales (CIRN), INTA Castelar, De los Reseros y Nicolás Repetto s/n, Hurlingham, Buenos Aires, Argentina
Keywords: forestry system, biomass accumulation, carbon sequestration, soil organic carbon, plantation age


Aim of study: To quantify the biomass and carbon stored in the main ecosystem components in Pinus radiata D. Don plantations across an age sequence in the Pampean region of Argentina.

Area of study: Plantations were established on non-agricultural land, southeast of the province of Buenos Aires.

Material and methods: Fourteen sites were selected of Pinus radiata plantations, 9-, 13-, 15-, 19- and 21-years-old, in a first forest rotation. Forty-two trees were destructively sampled, allometric functions were set and biomass was estimated for the different compartments (needles, branches, stem). Root biomass was estimated from equations adjusted by the sampling of twenty-four trees. At 4 sites, C-stock was determined in the tree component, in the forest floor and understory, and soil organic carbon (SOC) was determined to a 50 cm depth.

Main results: C-stock in the tree component increased with stand age, whereas SOC and C-stock in the forest floor and understory were not related to stand age. The system-level C-stock was 273.1, 263.7, 269.7 and 324.1 Mg ha-1 for the 9-, 13-, 19- and 21-year-old stands. On average, 69% of the total system-level C-stock was in the soil, while 28% was in the tree biomass and 3% was in the forest floor and understory.

Research highlights: The forestry component contributed to C sequestration with no changes in SOC-stocks reserves for the age range studied.


Download data is not yet available.


Alvarez R, Berhongaray G, Gimenez A, 2021. Are grassland soils of the pampas sequestering carbon? Sci Total Environ 763: 142978.

Apodaca MJ, Crisci JV, Katinas L, 2015. Las provincias fitogeográficas de la República Argentina: definición y sus principales áreas protegidas. In: El deterioro del suelo y del ambiente en la Argentina, vol 1. Ed. Dunken, Argentina, pp: 79-101.

Baker TG, Attiwill PM, Stewart HTL, 1984. Biomass equations for Pinus radiata in Gippsland, Victoria. N Z J For Sci 14(1): 89-96.

Balboa-Murias MA, Rodríguez-Soalleiro R, Merino M, Álvarez-González JG, 2006. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manage 237(1-3): 29-38.

Benz P, Chen SH, Dang SH, Dieter M, Labelle ER, Liu G, et al., 2020. Multifunctionality of forests: A white paper on challenges and opportunities in China and Germany. Forests 11(3): 266.

Berhongaray G, Alvarez RA, De Paepe J, Caride C, Cantet R, 2013 Land use effects on soil carbon in the Argentine Pampas. Geoderma 192: 97-110.

Brown S, Iverson LR, Prasda A, Liu D, 1993. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto Int 8: 45-59.

Burke W, Gabriels D, Bouma J, 1986. Soil structure assessment. A.A. Balkema: Rotterdam.

Chae HM, Choi SH, Lee SH, Cha S, Yang KC, Shim JK, 2019. Effect of litter quality on needle decomposition for four pine species in Korea. Forests 10(5): 371.

Cuong L, Hung B, Bolanle-Ojo OT, Xu X, Thanh N, Chai L, Thang B, 2020. Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam. Forest Syst 29(2): e009.

De León GC, Uranga-Valencia LP, 2013. Theoretical evaluation of Huber and Smalian methods applied to tree stem classical geometries. Bosque 34(3): 311-317.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, 2008. InfoStat, vers 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J, 1994. Carbon pools and flux of global forest ecosystems. Science 263(5144): 185-190.

Hou G, Delang CO, Lu X, Gao L, 2020. A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species. Ann For Sci 77(4): 1-13.

IPCC, 2003. Good practice guidance for land use, land-use change and forestry. IPCC/IGES: Hayama, Japan.

IPCC, 2021. Summary for policymakers. In: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte V et al. (eds.). Cambridge Univ Press, UK.

Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, et al., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137 (3-4): 253-268.

Jobbágy EG, Jackson RB, 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64: 205-229.

Laclau P, 2003a. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manage 180(1-3): 317-333.

Laclau P, 2003b. Root biomass and carbon storage of ponderosa pine in a northwest Patagonia plantation. For Ecol Manage 173(1-3): 353-360.

Lee J, Tolunay D, Makineci E, Cömez A, Son YM, Kim R, Son Y, 2016. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Ann For Sci 73: 523-531.

Lei Z, Yu D, Zhou F, Zhang Y, Yu D, Zhou Y, Han Y, 2019. Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Sci Rep 9(1): 1-12.

Li X, Yi MJ, Son Y, Park PS, Lee KH, Son YM, et al., 2011. Biomass and carbon storage in an age-sequence of Korea pine (Pinus koraiensis) plantation forests in central Korea. J Plant Biol 54: 33-42.

Liu Y, Li S, Sun X, Yu S, 2016. Variations of forest soil organic carbon and its influencing factors in east China. Ann For Sci 73: 501-511.

Menéndez-Miguélez M, Ruiz-Peinado R, Del Río M, Calama R, 2021. Improving tree biomass models through crown ratio patterns and incomplete data sources. Eur J Forest Res 140(3): 675-689.

Merino A, Rey C, Brañas J, Rodriguez-Soalleiro R, 2003. Biomasa arbórea y acumulación de nutrientes en plantación de Pinus radiata D. Don en Galicia. Invest Agrar: Sist Recurs For 12(2): 85-98.

Moore JR, 2010. Allometric equations to predict the total aboveground biomass of radiata pine trees. Ann For Sci 67(8): 806.

Olmedo GF, Guevara M, Gilabert H, Montes CR, Arellano EC, Barría-Knopf B, et al., 2020. Baseline of carbon stocks in Pinus radiata and Eucalyptus spp. plantations of Chile. Forests 11: 1063.

Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK, 2002. Change in soil carbon following afforestation. For Ecol Manag 168(1-3): 241-257.

Peichl M, Arain MA, 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agr For Meteorol 140: 51-63.

Peichl M, Arain MA, 2007. Allometry and partitioning of above- and belowground tree biomass in an age sequence of white pine forests. For Ecol Manag 253: 68-80.

Pérez Cruzado C, 2011. Models for estimating biomass and carbon in biomass and soils in Pinus radiata (D. Don), Eucalyptus globulus (Labill) and Eucalyptus nitens (Deane & Maiden) Maiden plantations established in former agricultural lands in northwestern Spain. Doctoral Thesis, Univ Santiago Compostela, Spain.

Peri P, Gargaglione V, Martínez Pastur V, Lencinas MV, 2010. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manag 260: 229-237.

Rodriguez S, Videla C, Zamuner EC, Picone LI, Pose NN, Maceira NO, 2015. Cambios en propiedades químicas de un suelo Molisol de la Región Pampeana argentina con diferente historia de manejo. Chil J Agric Anim Sci 31: 137-148.

Romanya J, Vallejo VR, 2004. Productivity of Pinus radiata plantations in Spain in response to climate and soil. For Ecol Manag 195: 177-189.

Samuelson LJ, Stokes TA, Butnor JR, Johnsen KH, Gonzalea-Benecke CA, Anderson P, et al., 2014. Ecosystem carbon stocks in Pinus palustris forests. Can J For Res 44: 476-486.

Schlatter J, Gerding V, 1999. Productivity in an example of six characteristic sites of the VIII Region with Pinus radiata D. Don. Bosque 20(1): 65-77.

Sfeir A, 2015. Erosión y degradación de los suelos. Provincia de Buenos Aires. In: El deterioro del suelo y el ambiente en la Argentina; Casas R et al. (ed). CABA, Fundación FECIC 2, pp: 31-48. ISBN 979-950-9149-40-3.

Sisti CP, Dos Santos HP, Kohhann R, Alves BJ, Urquiaga S, Boddey RM, 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76(1): 39-58.

Smal H, Ligęza S, Pranagal J, Urban D, Pietruczyk-Popławska D, 2019. Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study. For Ecol Manage 451: 117536.

Soriano A, 1991. Río de la Plata grasslands. In: Ecosystems of the World. 8A. Natural grassland; Coupland RT (ed). Elsevier, pp: 367-407.

Soil Survey Staff, 2014. Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Vanninen P, Ylitalo H, Sievänen R, Mäkelä A, 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L). Trees 10(4): 231-238.

Vesterdal L, Ritter E, Gundersen P, 2002. Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169(1-2): 137-147.

Yang B, Xue W, Yu S, Zhou J, Zhang W, 2019. Effects of stand age on biomass allocation and allometry of Quercus acutissima in the Central Loess Plateau of China. Forests 10(1): 41.

Zalba P, Peinemann N, 1987. Efecto de algunas especies forestales sobre ciertas propiedades fisicoquímicas del suelo. Cienc Suelo 5(1):71-16.

Zhang X, Zhang X, Han H, Shi Z, Yang X, 2019. Biomass accumulation and carbon sequestration in an age-sequence of mongolian pine plantations in Horqin Sandy Land, China. Forests 10: 197.

Zhao J, Kang F, Wang L, Yu X, Zhao W, Song X, et al., 2014. Patterns of biomass and carbon distribution across a chronosequence of chinese pine (Pinus tabulaeformis) forests. PLoS ONE 9(4): e94966.

Zhou W, Han G, Liu M, Li X, 2019. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 7: e78.

How to Cite
FERREREP., & LUPIA. M. (2023). How much carbon do Argentine Pampas Pinus radiata plantations store?. Forest Systems, 32(1), e005.
Research Articles