Management of mixed oak-pine forests under climate

  • M. Gutsch Potsdam Institue for Climate Impact Research (PIK). P.O. Box 60 12 03. 14412 Potsdam. Germ
  • P. Lasch Potsdam Institue for Climate Impact Research (PIK). P.O. Box 60 12 03. 14412 Potsdam. Germ
  • F. Suckow Potsdam Institue for Climate Impact Research (PIK). P.O. Box 60 12 03. 14412 Potsdam. Germ
  • C. Reyer Potsdam Institue for Climate Impact Research (PIK). P.O. Box 60 12 03. 14412 Potsdam. Germ
Keywords: mixed oak-pine stand, forest growth model 4C, climate change, uncertainty, management, multi-criteria


The process-based forest growth model 4C (FORESEE - FORESt Ecosystems in a Changing Environment) was used to analyze the growth of a mixed oak-pine stand [Quercus petraea (Mattuschka) Liebl., Pinus sylvestris L.]. The oak-pine stand is typical for the ongoing forest transformation in the north-eastern lowlands. The pine and the oak trees are 104 and 9 years old, respectively. Three different management scenarios (A, B, C) with different thinning grades and a thinning interval of five years were simulated. Every management scenario was simulated under three different climate scenarios (0K, 2K, 3K) compiled by the regional statistical climate model STAR 2.0 (PIK). For each climate scenario 100 different realisations were generated. The realisations of the climate scenarios encompass the period 2036-2060 and exhibit an increase of mean annual temperature of zero, two and three Kelvin until 2060, respectively. We selected 9 model outputs concerning biomass, growth and harvest which were aggregated to a single total performance index (TPI). The TPI was used to assess the management scenarios with regard to three management objectives (carbon sequestration, intermediate, timber yield) under climate change until 2060. We found out that management scenario A led to the highest TPI concerning the carbon sequestration objective and management scenario C performed best concerning the two other objectives. The analysis of variance in the growth related model outputs showed an increase of climate uncertainty with increasing climate warming. Interestingly, the increase of climate induced uncertainty is much higher from 2 to 3 K than from 0 to 2 K.


Download data is not yet available.


Bugmann H., Grote R., Lasch P., Lindner M., Suckow F., 1997. A new forest gap model to study the effects of environmental change on forest structure and functioning. Impacts of global change of tree physiology and forest ecosystem (Mohren G.M.J., Kramer K., Sabate S., eds). Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26-29 November 1996, Wageningen, Dordrecht, Kluwer Academic Publisher. pp. 255-261.

Bundestag D., 2004. Gesetz für den Vorrang erneuerbarer Energien. BGBl 2004 I Nr. 40. D. Bundestag, Deutscher Bundestag. pp. 1918-1930.

CEC, 2007. Renewable energy road map renewable energies in the 21st century: building a more sustainable future. B. Brussels, Commission of the eurpean communities. COM(2006) 848.

Christensen J.H., Hewitson B., Busuioc A., Chen A., Gao X., Held I., Jones R., Kolli R.K., Kwon W.-T., Laprise R., Magaña Rueda V., Mearns L., Menéndez C.G., Räisänen J., Rinke A., Sarr A., Whetton P., 2007. Regional climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M.M., Miller H.L., eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Glugla G., 1969. Berechnungsverfahren zur Ermittlung des aktuellen Wassergehaltes und Gravitationswasserabflusses im Boden. Albrecht-Thaer-Archiv 13, 371-376.

Grote R., F. Suckow F., 1998. Integrating dynamic morphological properties into forest growth modeling. I. Effects on water balance and gas exchange. Forest Ecology and Management 112, 101-119.

Haxeltine A., Prentice I.C., 1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemical Cycles 10(4), 693-709.

Haxeltine A., Prentice I.C., 1996. A general model for the light-use efficiency of primary production. Functional Ecology 10(5), 551-561.

Koitzsch R., 1977. Schätzung der Bodenfeuchte aus meteorologischen Daten, Boden- und Pflanzenparametern mit einem Mehrschichtmodell. Z f Meteor 27(5), 302-306.

Landsberg J.J., 2003. Modelling forest ecosystems: state of the art, challenges, and future directions. Canadian Journal of Forest Research 33(3), 385-397.

Lasch P., Badeck F.W., Suckow F., Lindner M., Mohr P., 2005. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management 207(1-2), 59-74.

Lasch P., Lindner M., Erhard M., Suckow F., Wenzel A., 2002. Regional impact assessment on forest structure and functions under climate change - the Brandenburg case study. Forest Ecology and Management 162(1), 73-86.

Lehtonen A., Makipaa R., Heikkinen J., Sievanen R., Liski J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188(1-3), 211-224.

Lindner M., 2000. Developing adaptive forest management strategies to cope with climate change. Tree Physiology 20(5-6), 299-307.

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., García-Gonzalo J., Seidl R., Delzon S., Corona P., Kolstrom M., Lexer M.J., Marchetti M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259(4), 698-709.

Mäkelä A., Landsberg J., Ek A.R., Burk T.E., Ter-Mikaelian M., Agren G.I., Oliver C.D., Puttonen P., 2000. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiology 20(5-6), 289-298. PMid:12651445

Orlowsky B., Gerstengarbe F.W., Werner P.C., 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical And Applied Climatology 92(3-4), 209-223.

Panferov O., Doering C., Rauch E., Sogachev A., Ahrends B., 2009. Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate. Environmental Research Letters 4(4).

Prato T., 2008a. Accounting for risk and uncertainty in determining preferred strategies for adapting to future climate change. Mitigation and Adaptation Strategies for Global Change 13(1), 47.

Prato T., 2008b. Conceptual framework for assessment and management of ecosystem impacts of climate change. Ecological Complexity 5(4), 329-338.

Reyer C., Lasch P., Mohren G.M.J., Mohren S.F. (in press). Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) under climate change - a model-based analysis. Annals of Forest Science.

Schaber J., Badeck F.-W., 2003. Physiology based phenology models for forest tree species in Germany. Intern J Biometeorol 47(7), 193-201. PMid:12698325

Schmid F., Trede M., 2006. Finanzmarktstatistik. Heidelberg, Springer

Seidl R., Rammer W., Lexer M., 2010. Climate change vulnerability of sustainable forest management in the Eastern Alps. Climatic Change: 1.

Skovsgaard J.P., Stupak I., Vesterdal L., 2006. Distribution of biomass and carbon in even-aged stands of Norway spruce [Picea abies (L.) Karst.]: a case study on spacing and thinning effects in northern Denmark. Forest Research 21(6), 470-488.

Waring R.H., 1987. Characteristics of trees predisposed to die. Bioscience 37(8), 569-574.

Zerbe S., 2002. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. Forest Ecology and Management 167, 27-42.

How to Cite
GutschM., LaschP., SuckowF., & ReyerC. (2011). Management of mixed oak-pine forests under climate. Forest Systems, 20(3), 453-463.
Research Articles