M

  • J. V. Mora I
  • M. del Rio I
  • A. Bravo-Oviedo I

Abstract

Downloads

Download data is not yet available.

Author Biography

J. V. Mora, I
D

References

Álvarez-González J. 1997. Análisis y caracterización de las distribuciones diamétricas de Pinus pinaster Ait. en Galicia. Tesis Doctoral. Universidad Politécnica de Madrid. PMCid:1218424

Barrio-Anta M, Castedo-Dorado F, Diéguez-Aranda U, Álvarez- González JG, Parresol BR, Rodríguez-Soalleiro R. 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can J For Res 36, 1461- 1474. http://dx.doi.org/10.1139/x06-028

Baskerville G. 1972. Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2, 49-53. http://dx.doi.org/10.1139/x72-009

Bautista R, Alonso A, Grau J, Gómez J. 2001. Tablas de producción de selvicultura media para las masas de Pinus Nigra Arn. de la Sierra de Cazorla, Segura y las Villas. Actas del III Congreso Forestal Nacional, Granada, 25-28 septiembre. Tomo III, pp. 854-859.

Bravo F, Álvarez-Gonzalez JG, Río M, Barrio M, Bonet JA, Bravo-Oviedo A, Calama R, Castedo-Dorado F, Crecente- Campo F, Condes S, Dieguez-Aranda U, Gonzalez-Martinez SC, Lizarralde I, Nanos N, Madrigal A, Martínez-Millán FJ, Montero G, Ordóñez C, Palahí M, Piqué M, Rodríguez F, Rodríguez-Soalleiro R, Rojo A, Ruiz-Peinado R, Sánchez- González M, Trasobares A, Vázquez-Piqué J . 2011. Growth and yield models in Spain: historical overview, contemporary examples and perspectives. Forest Systems 20(2), 315-328.

Bravo-Oviedo A, Río M, Montero G. 2004. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. For Ecol Manage 201, 187-197.

Bravo-Oviedo A, Sterba H, Río M, Bravo F. 2006. Competition- induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For Ecol Manage 222(1-3), 88-98.

Cao Q. 2004. Predicting parameters of a Weibull function for modeling diameter distribution. For Sci 50, 682-685.

Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Álvarez- González JG. 2007. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann For Sci 64, 609-619.

http://dx.doi.org/10.1051/forest:2007039

Clutter JL. 1963. Compatible growth and yield models for loblolly pine. For Sci 9, 354-371.

Curtis R. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. For Sci 13, 365-375.

Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rodríguez-Soalleiro R. 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur J For Res 124, 143-153.

http://dx.doi.org/10.1007/s10342-004-0043-5

Eid T, Tuhus E. 2001. Models for individual tree mortality in Norway. For Ecol Manage 154, 69-84.

Gadow K, Rojo A, Álvarez-González J, Rodríguez-Soalleiro R. 1999. Ensayos de crecimiento. Parcelas permanentes, temporales y de intervalo. Invest Agrar: Sist Recur For 8, 299-310.

García O. 1988. Growth modelling-a (re) view. NZ For 33, 14-17.

García O. 1990. Growth of thinned and pruned stands. En: New approaches to spacing and thinnig in plantation forestry: Proceedings of the IUFRO symposium. (Jamen N, Tarlton GL, eds). Ed New Zealand Ministry of Forestry, Rotorua, 10-14 April 1989, FRI Bulletin 151.

García O. 1994. The state-space approach in growth modelling. Can J For Res 24, 1894-1903. http://dx.doi.org/10.1139/x94-244

García O. 2003. Dimensionality reduction in growth models: an example. Forest biometry, Modelling and Information Sciences 1, 1-15.

Gómez Loranca J. 1996. Pinus nigra Am. en el Sistema Ibérico: Tablas de crecimiento y producción. Monografías INIA 93, 106 pp.

Gregoire T, Schabenberger O, Barret J. 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J For Res 25, 137-156.

http://dx.doi.org/10.1139/x95-017

Harvey A. 1976. Estimating regression models with multiplicative heteroscedasticity. Econometrica 44(3), 461-465. http://dx.doi.org/10.2307/1913974

Jutras S, Hokka H, Alenius V, Salminen H. 2003. Modeling mortality of individual trees in drained peatland sites in Finland. Silva Fenn 37, 235-251.

Knoebel B, Burkhart H, Beck D. 1986. A growth and yield model for thinned stands of yellow-poplar. For Sci Monogr 27, 62 pp.

Laird N, Ware J. 1982. Random-effects models for longitudinal data. Biometrics 38, 963-974. http://dx.doi.org/10.2307/2529876 PMid:7168798

Lee Y. 1971. Predicting mortality for even-aged stands of lodgepole pine. For. Chron 47, 29-32.

Martín-Benito D, Gea-Izquierdo G, Río M, Cañellas I. 2008. Long-term trends in dominant-height growth of black pine using dynamic models. For Ecol Manage 256, 1230-1238.

Martínez-Millán J, Ara P, González I. 1993. Ecuaciones alométricas de tres variables: estimación des volumen, crecimiento y porcentaje de corteza de las principales especies maderables españolas. Invest Agrar: Sist Recur For 2, 211-228.

Mateus A, Tomé M. 2011. Modelling the diameter distribution of eucalyptus plantations with Johnson's SB probability density function: parameters recovery from a compatible system of equations to predict stand variables. Ann For Sci 68, 1-11.

Palahí M, Grau J. 2003. Preliminary site index model and individual-tree growth and mortality models for black pine (Pinus nigra Arn.) in Catalonia (Spain). Invest Agrar: Sist Recur For 12, 137-148.

Pienaar L, Harrison W. 1989. Simultaneous growth and yield prediction equations for Pinus elliottii plantations in Zululand. South African Forestry Journal 149, 48-53. http://dx.doi.org/10.1080/00382167.1989.9628992

Reynolds M. 1984. Estimating the error in model predictions. For Sci 30, 454-469.

Río M, Montero G. 2001. Modelo de simulación de claras en masas de Pinus sylvestris L. Monografías INIA: Forestal Nº 3, Ministerio de Ciencia y Tecnología. pp. 114 + CD.

SAS Institute 2008. SAS/ETS® 9.2 User's Guide. SAS Institute Inc., Cary, NC.

SAS Institute 2009. SAS/STAT® 9.2 User's Guide, second ed. SAS Institute Inc., Cary, NC.

Snowdon P. 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21, 720-724. http://dx.doi.org/10.1139/x91-101

Sullivan A, Clutter J. 1972. A simultaneous growth and yield model for loblolly pine. For Sci 18, 76-86.

Vanclay J. 1994. Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, Wallingford (RU). 198 pp.

Woollons R. 1998. Even-aged stand mortality estimation through a two-step regression process. For Ecol Manage 105, 189-195.

Yang Y, Titus S, Huang S. 2003. Modeling individual tree mortality for white spruce in Alberta. Ecol Model 163, 209-222.

http://dx.doi.org/10.1016/S0304-3800(03)00008-5

Yao X, Titus S, Macdonald S. 2001. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can J For Res 31, 283-291.

Zellner A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Asso 57, 348-368. http://dx.doi.org/10.1080/01621459.1962.10480664

Zellner A, Theil H. 1962. Three-stage least squares: simultaneous estimation of simultaneous equations. Econometrica 30, 54-78. http://dx.doi.org/10.2307/1911287

Zhao D, Borders B, Wang M. 2006. Survival model for fusiform rust infected loblolly pine plantations with and without mid-rotation understory vegetation control. For Ecol Manage 235, 232-239.

Zhao D, Borders B, Wang M, Kane M. 2007. Modeling mortality of second-rotation loblolly pine plantations in the Piedmont/Upper Coastal Plain and Lower Coastal Plain of the southern United States. For Ecol Manage 252, 132-143.

Published
2012-11-28
How to Cite
MoraJ. V., del RioM., & Bravo-OviedoA. (2012). M. Forest Systems, 21(3), 439-445. https://doi.org/10.5424/fs/2012213-02722
Section
Research Articles