Stand, tree and crown variables affecting cone crop and seed yield of Aleppo pine forests in different bioclimatic regions of Tunisia

  • A. Ayari National Institute of Research in Rural Engineering, Waters and Forests (INRGREF) P.B. 10, Street Hedi Karray, Ariana – 2080
  • A. Zubizarreta-Gerendiain Forest Research Centre, School of Agriculture, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa
  • M. Tome Instituto Superior de Agronomia, Universidade Técnica de Lisboa. Departamento de Engenharia Florestal - Tapada da Ajuda, 1349-017 Lisboa.
  • J. Tome Instituto Superior de Agronomia, Universidade Técnica de Lisboa. Departamento de Engenharia Florestal - Tapada da Ajuda, 1349-017 Lisboa.
  • S. Garchi Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), BP 10, Rue de Hédi Karray, Ariana, 2080.
  • B. Henchi Faculté des Sciences Mathématiques, Physiques et Naturelles, Tunis Université El-Manar, Campus Universitaire, 2092 - El Manar.


In Tunisia, the Aleppo pine seed has a great importance, since in the last decades human consumption has risen considerable. Thus its regeneration and seed production capacities are important factors to take into account to reach the necessities of the country. To study the production of cones and seeds of Aleppo pine, Tunisia’s native Aleppo pine forests were surveyed in summer 2006, using 79 plots (40 × 25 m: 1,000 m²) spread over four bioclimatic zones. Standard tree characteristics, crown dimensions and cone/seed variables were measured from an average tree of each plot(i.e. a total of 79 trees). Recorded data were submitted to simple and multiple regression analyses for explaining the variability in crown volume and crown surface, cone number and seed yield per average tree. Results showed a negative correlation between the stand density, crown characteristics and number of cones and seeds harvested from the average tree. For crown volume and surface, age, stand density, tree height, diameter at breast height, crown diameterand crown height were important explanatory variables under multiple regression analyses. For cone number per tree, only the age, stand density and total height were the most determinant variables. Matures cone number per tree and cone mass per tree were the most informative parameters for the total seed yields per tree. Finally, forest managers should know that crown size affects cone and seed crop of the Aleppo pine individual tree grown in Tunisia, but has no effects on seed number per cone and seed mass per cone.


Download data is not yet available.


Arista M., Talavera S., 1996. Density Effect on the Fruit-set, Seed Crop Viability and Seedling Vigour of Abies pinsapo. Ann Bot 77, 187-192.

Asset G., Baugé E., Wolff R.L., Fruchart J.C., Dallogeville J., 1999. Pinus pinaster Oil Affects Lipoprotein Metabolism in Apolipoprotein E-Deficient Mice. J. Nut. 129, 1972-1978. PMid:10539771

Ayari A., Moya D., Ben Mansoura A, Rejeb M.N., Garchi S., De Las Heras J., Henchi B., 2010. Forest stand characteristics and individual tree size influences on Aleppo pine fructification and species conservation. International symposium on the biology of rare and endemic plant species (BIORARE, 2010), Fethiye, Mugla, May, 26-29, 2010, pp: 39-40.

Ayari A., Moya D., Rejeb M.N., Ben Mansoura A., Albouchi A., De Las Heras J., Fezzani T., Henchi B., 2011a. Geographical variation on cone and seed production of natural Pinus halepensis Mill. forests in Tunisia. J AR E 75, 403-410.

Ayari A., Moya D., Rejeb M.N., Ben Mansoura A., Garchi S., De Las Heras J., Henchi B., 2011b. Alternative sampling methods to estimate structure and reproductive characteristics of Aleppo pine forests in Tunisia. Forest Systems 20(3), 348-360.

Bentouati A., Bariteau M., 2005. Une sylviculture pour le pin d’Alep des Aurès (Algérie). Forêt médi 26(4), 315-321

Cain M.D., Shelton M.D., 2004. Revisiting the relationship between common weather variables and loblolly-shortleaf pine seed crops in natural stands. New Forests 9, 187-204.

Calama R., Mutke S., Gordo J., Montero G., 2008. An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manage 255 (3/4), 660-673.

Calama R., Mutke S., Tomé J.A., Gordo F.J., Montero G., Tomé M. 2011. Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecological Modelling 222, 606-618.

Caron G.E., Powell G.R., 1989. Cone size and seed yield in young Picea mariana trees. Can J For Res 19, 351-358.

Carrasquinho, I., Freire, J., Rodrigues, A., Tomé. M., 2010. Selection of Pinus pinea L. plus tree candidates for cone production. Ann. For. Sci. 67 8 (2010) 814 DOI: 10.1051/ forest/2010050).

Croker T.C., Boyer W.D., 1975. Regenerating longleaf pine naturally. - USDA Forest Service, Research Paper SO-105. Southern Forest Experiment Station, New Orleans.

Daly-Hassen H., Ben Mansoura A., 2005. In Merlo M. & Croitoru L. (Eds.) Valuing Mediterranean forests: Towards Total Economic Value. - CABI Publishing, Cambridge, Mass, USA, pp. 105-122.

DGF, 2010. Inventaire des forêts par télédétection. Résultats du Deuxième Inventaire Forestier et Pastoral National, 180 pp.

Eis S., 1976. Association of western white pine cone crops with weather variables. Can J For Res 6, 6-12.

Garchi S. And Ben Mansoura A., 1999. Influence de l’ombrage sur la structure et l’accroissement du pin d’Alep à Jbel mansour. Annales de l’INRGREF 3, 89-102.

Goubitz S., Werger M.J.A., Shmida A., Ne’eman G., 2002. Cone abortion in Pinus halepensis: the role of pollen quantity, tree size and cone location. Oikos 97, 125-133.

Greene D.F., Zasada J.C., Sirois L., Kneeshaw D., Morin H., Charron I., Simard M.J., 1999. A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29, 824-839.

Grove A.T., Rackham O., 2001. The nature of Mediterranean Europe: An ecological history. New Haven, CT, Yale University Press.

Harfouch A., Boudjada S., Chettah W., Allam M., Belhou O., Merazga A., 2003. Variation and population structure in Aleppo pine (Pinus halepensis Mill) in Algeria. Silvae Genet 52, 244-249.

Karlsson C., Orlander G., 2002. Mineral nutrients in needles of Pinus sylvestris seed trees after release cutting and their correlations with cone production and seed weight. For Ecol Manage 166, 183-191.

Kim C., Sharik T.L., Jurgensen M.F., 1996. Canopy cover effects on mass loss, and nitrogen and phosphorus daynamics from decomposing litter in oak and pine stands in northern Lower Michigan. For Ecol Manage 80, 13-20.

Krannitz P.G., Duralia T. E., 2004. Cone and seed production in pinus ponderosa: A review. West N Am Nat 64, 208-218.

Krugman S.L., Jenkinson J.L., 1974. In Schopmeyer C. S. (tech. coordinator), Seeds of woody plants in the United States. USDA Agric. Washington, DC. Handbook. pp. 598-638.

Lim C. 2007. Estimation of urban tree crown volume based on object-oriented approach and LIDAR data. Master’s Thesis, International Institute for Geo-Information Science and Earth observation, Enschede, Netherlands, 83 pp.

Mencuccini M., Piussi P., Sullia Z., 1995. Thirty years of seed production in a subalpine Norway spruce forest: patterns of temporal and spatial variation. For Ecol Manage 76, 109-125.

Messaoud Y., Bergeron Y., Asselin H., 2007. Reproductive potential of balsam fir (Abies balsamea), white spruce (Picea glauca), and black spruce (P. mariana) at the ecotone between mixedwood and coniferous forests in the boreal zone of western Quebec. Am J Bot 94, 746-754. PMid:21636443

Milliken, G. A., Johnson, D. E., 2002. Analysis of messy data, volume III: analysis of covariance. Chapman & Hall/CRC.

Moya D., De Las Heras J., Lopez-Serrano F.R., Leone V., 2008. Optimal intensity and age management in young Aleppo pine stands for post-fire resilience. For Ecol Manage 255, 3270-3280.

Mutke, S., Gordo, J., and Gil, L. 2005. Variability of Mediterranean Stone pine cone production: Yield loss as response to climate change. Agricultural and Forest Meteorology 132: 263-272.

Mutke S., Iglesias S., Gil L., 2007. Selección de clones de pino piñonero sobresalientes en la producción de piña. Invest Agraria Sist Rec For 16(1), 39-51.

Nahal I. (1986): Taxonomie et aire de géographique des pins du groupe halepensis. CIHEAM, Options Mediterraneennes 1, 1-9.

Nasri N., Khaldi A., Triki S., 2004. Variabilité morphologique des cônes et graines de pin d’Alep et pin pignon en Tunisie. Rev For Française LVI, 21-28.

Oliva J., Colinas C., 2007. Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: role of management, historic dynamics and pathogens. For Ecol Manage 252, 84-97.

Ordonez J.L., Retana J., Espelta J.M., 2005. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For Ecol Manage 206, 109-117.

Rejeb M.N., Kahldi A., Khouja M.L., Garchi S., Ben Mansoura A., Nouri M., 1996. Guide pour le choix des espèces de reboisement : Espèces forestières et pastorales. Version provisoire. INRGREF, Tunisie, 128 pp.

Rondeux J. 1993. La mesure des arbres et des peuplements forestières. Les presses agronomiques de Gembloux, Belgium, pp. 521.

Richardson D.M. 1998. Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, United Kingdom, 526 pp.

Ryan M.G., Yoder B.J. 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242.

SAS, Statistical Analysis Systems (2005) SASR User’s Guide v 9.0. Statistical Analysis Systems Institute. Inc., Cary, North Carolina.

Smith C.C., Balda R.P., 1979. Competition among insects, birds and mammals for conifer seeds. Am Zool 19, 1065-1083.

Sork V.L., Bramble J., Sexton O., 1993. Ecology Of Mast- Fruiting In Three Species Of North American Deciduous Oaks. Ecology 74, 528-541.

Stiell W.M., 1988. Consistency of cone production in individual red pine. For Chron 64, 480-484.

Summers R.W., Proctor R., 2005. Timing of shedding seeds and cones, and production in different stands of Scots pines at Abernethy Forest, Scotland. Forestry 78, 541-549.

Sutton A., Staniforth R.J., Tardif J., 2002. Reproductive ecology and allometry of red pine (Pinus resinosa) at the northwestern limit of its distribution range in Manitoba Canada. Can J Bot 80, 482-493.

Tapias R., Gil L., Fuentes-Utrilla P., Pardos J.A., 2001. Canopy seed banks in Mediterranean pines of southeastern Spain: a comparison between Pinus halepensis Mill., Pinus pinaster Ait., Pinus nigra Arn. and Pinus pinea L. J Ecol 89, 629-638.

Trabaud L., 1987. Fire and survival traits of plants. The Role of Fire in Ecological Systems (ed. Trabaud, L.). SPB Academic Publishing, The Hague, the Netherlands. pp. 65-89.

Trabaud L., Michels C., Grosman J., 1985. Recovery of burnt Pinus halepensis Mill. forests. II. Pine recon-stitution after wildfirere. For Ecol Manage 13, 167-179.

Turner M.G., Turner D.M., Romme W.H., Tinker D.B., 2007. Cone production in young post-fire Pinus contorta stands in Greater Yellowstone (USA). For Ecol Manage 242, 119-126.

Way S., 2006. Strategic management of Aleppo Pines on Lower Eyre Peninsula to maximise biodiversity conservation outcomes, Department for Environment and Heritage, South Australia.

How to Cite
AyariA., Zubizarreta-GerendiainA., TomeM., TomeJ., GarchiS., & HenchiB. (2012). Stand, tree and crown variables affecting cone crop and seed yield of Aleppo pine forests in different bioclimatic regions of Tunisia. Forest Systems, 21(1), 128-140.
Research Articles