Ignition probability of fine dead surface fuels of native Patagonian forests or Argentina

  • Lucas O. Bianchi Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel and Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP – CONICET) Esquel, Chubut.
  • Guillermo E. Defosse Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel and Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP – CONICET) Esquel, Chubut.


Aim of study: The Canadian Forest Fire Weather Index (FWI) is being implemented all over the world. This index is being adapted to the Argentinean ecosystems since the year 2000. With the objective of calibrating the Fine Fuel Moisture Code (FFMC) of the FWI system to Patagonian forests, we studied the relationship between ignition probability and fine dead surface fuel moisture content (MC) as an indicator of potential fire ignition.
Area of study: The study area is located in northwestern Patagonia, Argentina, and comprised two main forest types (cypress and ñire) grown under a Mediterranean climate, with a dry summer and precipitations during winter and autumn (~500-800 mm per year).
Material and Methods: We conducted lab ignition tests fires to determine the threshold of fine dead fuel ignition at different MC levels. Moisture content of dead fine surface fuels in the field was measured every 10-15 days from November to March for three seasons. We calculated the FFMC during these seasons and correlated it with the measured MC by applying a logistic regression model. We combined the results of the ignition tests and of the regressions to suggest FFMC categories for estimating fire danger in Patagonian forests.
Main results: The ignition threshold occurred at MC values of 21.5 and 25.0% for cypress and ñire sites, respectively. The MC measured varied from 7.3 to 129.6%, and the calculated FFMC varied between 13.4 and 92.6. Highly significant regressions resulted when FFMC was related to MC. The ignition threshold corresponded to a FFMC=85. We proposed to divide the FFMC scale in three fire danger categories: Low (FFMC≤85), High (85<FFMC≤89) and Extreme (FFMC>89).
Research highlights: Our results provide a useful tool for predicting fire danger in these ecosystems, and are a contribution to the development of the Argentinean Fire Danger Rating and a reference for similar studies in other countries where the FWI is being implemented.

Keywords: Austrocedrus chilensi; Nothofagus antarctica; wildfire; fire behavior; fuel moisture; fire weather index.


Download data is not yet available.


Alexander ME, Cole FV, 2001. Rating fire danger in Alaska ecosystems: CFFDRS provides an invaluable guide to systematically evaluating burning conditions. Fireline 12: 2-3.

Amiro BD, Logan KA, Wotton BM, Flannigan MD, Todd JB, Stocks BJ et al., 2004. Fire weather index system components for large fires in the Canadian boreal forest. International Journal of Wildland Fire 13: 391-400. http://dx.doi.org/10.1071/WF03066

Andrews PL, 1986. BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem, Part 1. USDA, Forest Service, Intermountain Research Station, General Technical Report INT-194 (Ogden, UT). 130 pp.

Andrews PL, Chase CH, 1989. BEHAVE: fire behavior prediction and fuel modeling system BURN subsystem, Part 2. USDA, Forest Service, Intermountain Research Station, General Technical Report INT-260 (Ogden, UT). 93 pp.

Beverly JL, Wotton BM, 2007. Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire 16: 161-173. http://dx.doi.org/10.1071/WF06072

Bianchi LO, Dentoni MC, Muñoz MM, Defossé GE, 2012. Modelos de combustibles en el ecotono bosque-estepa de la Patagonia andina: caracterización de las asociaciones arbustivas de acuerdo a su respuesta al fuego. Centro de Investigación y Extensión Forestal Andino Patagónico, Publicación Técnica No 37 (Esquel, Chubut, Argentina). 45 pp.

Blackmarr WH, 1972. Moisture content influences ignitability of slash pine litter. USDA Forest Service-Southern Forest Experiment Station, Research Note SE-173 (Asheville, NC). 7 pp.

Burgan RE, Rothermel RC. 1984. BEHAVE: fire behavior prediction and fuel modeling system – FUEL subsystem. USDA, Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-167 (Ogden, UT). 126 pp.

Canadian Interagency Forest Fire Centre, 2002. Glossary of forest fire management terms. Canadian Interagency Forest Fire Centre (Winnipeg, Manitoba). 46 pp.

Cheney P, Sullivan A, 2008. Grassfires: fuel, weather and fire behaviour. CSIRO Publishing, Collingwood VIC, Australia. 150 pp.

Defossé GE, 1995. Germination, emergence, and survival of Festuca spp seedlings in a steppe of Patagonia, Argentina. PhD dissertation. College of Forestry, Wildlife and Range Sciences, University of Idaho. 105 pp.

De Groot WJ, Wardati, Wang Y, 2005. Calibrating the fine fuel moisture code for grass ignition potential in Sumatra, Indonesia. International Journal of Wildland Fire 14: 161-168. http://dx.doi.org/10.1071/WF04054

De Groot WJ, Field RD, Brady MA, Roswintiarti O, Mohamad M, 2006. Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change 12: 165-180. http://dx.doi.org/10.1007/s11027-006-9043-8

Dentoni MC, Marek D, Bianchi LO, Ciampoli Halaman MC, Guglielmin DA, Mu-oz MM, 2006. Evaluación del peligro de Incendios en la región Andino Patagónica Norte. Proc Ecofuego 2006, Esquel, Chubut. Argentina. p: 13.

Dentoni MC, Muñoz MM, Epele F, 2007. Implementación de un sistema nacional de evaluación de peligro de incendios: la experiencia argentina. Proc 4th International Wildland Fire Conference, Sevilla, Espa-a. p: 12.

Dimitri M, 1972. La región de los bosques andino-patagónicos, Sinopsis general. Colección Científica del INTA. Buenos Aires, Argentina. 381 pp.

Dirección General de Bosques y Parques de Chubut, 2010. Informe anual de la temporada de incendios. Servicio Provincial de Manejo del Fuego. 25 pp.

Fernandes PM, Botelho H, Rego F, Loureiro C, 2008. Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Canadian Journal of Forest Research 38: 1-19. http://dx.doi.org/10.1139/X07-159

Forestry Canada Fire Danger Group, 1992. Development and structure of the Canadian forest fire behavior prediction system. Forestry Canada-Science and Sustainable Development Directorate, (Ottawa). 63 pp.

Fox J, Weisberg S, 2011. An R companion to applied regression, 2nd ed. Sage, Thousand Oaks, CA.

Frandsen WH, 1997. Ignition probability of organic soils. Canadian Journal of Forest Research 27: 1471-1477. http://dx.doi.org/10.1139/x97-106

Gillon D, Gomendy V, Houssard C, Maréchal J, Valette JC, 1995. Combustion and nutrient losses during laboratory burns. International Journal of Wildland Fire 5: 1-12. http://dx.doi.org/10.1071/WF9950001

Gyenge J, Fernández ME, Sarasola M, Schlichter T, 2011. Stand density and drought interaction on water relations of Nothofagus antarctica: contribution of forest management to climate change adaptability. Trees 25: 1111-1120. http://dx.doi.org/10.1007/s00468-011-0586-2

Kunst C, Ledesma R, Bravo S, Defossé GE, Godoy J, Navarrete V, 2012. Fire behavior in an Ecotonal Grassland of the Chaco region, Argentina. RIA: Revista de Investigaciones Agropecuarias 38: 4-9.

Laclau P, 1997. Los ecosistemas forestales y el hombre en el sur de chile y argentina. Fundación Vida Silvestre Argentina (FVSA) – Fondo Mundial para la Naturaleza (WWF), Boletín Técnico No 34. 120 pp.

Lantschner M V, Rusch V, 2007. Impacto de diferentes disturbios antrópicos sobre las comunidades de aves de bosques y matorrales de Nothofagus antarctica en el NO Patagónico. Ecología Austral 17: 99-112.

Marsden-Smedley JB, Catchpole WR, 1995. Fire behaviour modelling in Tasmanian buttongrass moorlands II. Fire behaviour. International Journal of Wildland Fire 5: 215-228. http://dx.doi.org/10.1071/WF9950215

Plucinski MP, Anderson WR, 2008. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire 17: 628-637. http://dx.doi.org/10.1071/WF07046

R Core Team, 2012. R: a language and environment for statistical computing.

Raínha M, Fernandes PM, 2002. Using the Canadian Fire Weather Index (FWI) in the Natural Park of Montesinho, NE Portugal: calibration and application to fire management. Proc Forest fire research and wildland fire safety. IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Luso, Coimbra, Portugal. 6 pp.

Rothermel RC, 1972. A mathematical model for predicting fire spread in wildland fuels. Intermountain Forest and Range Experiment Station – USDA Forest Service, Research Paper INT-115 (Ogden, Utah). 40 pp.

Ruiz A, Vega JA, Álvarez JG, 2009. Modelización de la variabilidad horaria de los contenidos de humedad en hojarasca de Eucalyptus globulus. Investigación agraria: Sistemas y recursos forestales 18: 247-263.

Secretaría de Ambiente y Desarrollo Sustentable, 2005. Primer Inventario Nacional de Bosques Nativos. Ministeriode Salud y Ambiente, Proyecto Bosques Nativos y Áreas Protegidas BIRF 4085-AR. 116 pp.

Tanskanen H, Venäläinen A, Puttonen P, Granström A, 2005. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research 35: 410-420. http://dx.doi.org/10.1139/x04-188

Taylor SW, Alexander ME, 2006. Science, technology, and human factors in fire danger rating: the Canadian experience. International Journal of Wildland Fire 15: 121- 135. http://dx.doi.org/10.1071/WF05021

Tian X, McRae DJ, Jin J, Shu L, Zhao F, Wang M, 2011. Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China. International Journal Of Wildland Fire 20: 963-973. http://dx.doi.org/10.1071/WF09120

Van Wagner CE, 1987. Development and structure of the Canadian Forest Fire Weather Index System. Petawa National Forestry Institute – Canadian Forestry Service, Forestry Technical Report 35 (Chalk River, Ontario). 37 pp.

Woodman M, Rawson R, 1982. Fuel reduction burning in Radiata pine plantations. Fire Management Branch – Department of Conservation & Environment, Research Report No14 (Victoria). 17 pp.

Wotton BM, 2009. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in Research Applications. Environmental and Ecological Statistics 16: 107-131. http://dx.doi.org/10.1007/s10651-007-0084-2

Wright JG, 1967. Forest-Fire hazard research as developed and conducted at the Petawawa forest experiment station. Forest Service – Petawawa Forest Experiment Station, Information Report FF-X-5 (Ottawa, Ontario, Canada). 72 pp.

How to Cite
BianchiL. O., & DefosseG. E. (2014). Ignition probability of fine dead surface fuels of native Patagonian forests or Argentina. Forest Systems, 23(1), 129-138. https://doi.org/10.5424/fs/2014231-04632
Research Articles