Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

  • Cintia V. Acuña Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar).
  • Pamela Villalba Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar).
  • H. Esteban Hopp Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar).
  • Susana N. Marcucci Poltri Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar).


Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs) located in candidate genes.

Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.

Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs) for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.

Main results: High cross-species transferability (92% to 100%) was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR), cellulose synthase 3 (CesA3), the transcription factor LIM1, homocysteine S-methyltransferase (HMT), shikimate kinase (SK), xyloglucan endotransglycosylase 2 (XTH2), glutathione S-transferase (GST), glutamate decarboxylase (GAD) and peroxidase (PER).

Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB) and for population genetic studies across different species within the subgenus Symphyomyrtus.

Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.


Download data is not yet available.


Acuña C, Fernandez P, Villalba P, García M, Hopp E, Marcucci Poltri S, 2012a. Discovery, validation and in silico functional characterization of EST-SSR markers in Eucalyptus globulus. Tree Genetics and Genomes 8: 289–301.

Acuña C, Villalba P, Pathauer P, Hopp, Marcucci Poltri S, 2012b. Characterization of novel microsatellite markers in candidate genes for wood properties for application in functional diversity assessment in Eucalyptus globulus. Electronic Journal of Biotechnology 15 (2), 12-28.

Botstein D, White RL, Skolnick M, Davis R.W. 1980. Construction of genetic linkage map in man using restriction length polymorphisms. The American Journal of Human Genetics 32(3): 314–331.

Brondani RP, Brondani C, Grattapaglia D, 2002. Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Molecular Genetics and Genomics 267(3): 338-347.

Cupertino FB, Leal JB, Correa RX, Gaiotto FA, 2011. Genetic diversity of Eucalyptus hybrids estimated by genomic and EST microsatellite markers. Biologia Plantarum 55(2): 379-382.

Faria DA, Mamani EMC, Pappas MR, Pappas GJ Jr, Grattapaglia D, 2010. A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of Eucalyptus. J Hered 10: 512–520.

Faria DA, Mamani E, Pappas GJ, Grattapaglia D, 2011. Genotyping systems for Eucalyptus based on tetra- penta- and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genetics & Genomes 7(1): 63-77.

Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P, 2006. Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytology 170(4): 739-752.

Freeman JS, Whittock SP, Potts BM, Vaillancourt RE, 2009. QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genetics & Genomes 5(4): 713–722.

Gion J, Rech P, Grima-pettenati J, Verhaegen D, Plomion C, 2000. Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Molecular Breeding 6: 441–449.

Gion JM, Carouche A, Deweer S, Bedon F, Pichavant F, Charpentier J.P, Bailleres H, Rozenberg P, Carocha V, Ognouabi N, Verhaegen D, Grima-Pettenati J, Vigneron P, Plomion C, 2011. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 12: 301.

Glaubitz JC, Emebiri LC, Moran GF, 2001. Dinucleotide microsatellites from Eucalyptus sieberi: inheritance diversity and improved scoring of single-base differences. Genome 44(6): 1041-1045.

He X, Wang Y, Li F, Weng Q, Li M, Xu L, Shi J, Gan S, 2012. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae). American journal of botany 99: 134–148.

Jones ME, Stokoe RL, Cross MJ, Scott LJ, Maguire TL, Shepherd M. 2001. Isolation of microsatellite loci from spotted gum (Corymbia variegata), and cross-species amplification in Corymbia and Eucalyptus. Molecular Ecology Notes 1(4): 276–278.

Langella O, 2002. Populations 1.2.28. Logiciel de génétique des populations. Available at URL:

Marcucci Poltri SN, Zelener N, Rodriguez Traverso J, Gelid P, Hopp HE, 2003. Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiology 23(9): 625-632.

Paux E, Tamasloukht MB, Ladouce N, Sivadon P, Grima-pettenati J, 2004. Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology 55: 263–280.

Peakall R, Smouse PE, 2006. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

Steane D, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg A, Grattapaglia D, Vaillancourt RE, 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular phylogenetics and evolution 59: 206–24.

Thumma BR, Southerton SG, Bell J.C, Owen JV, Henery ML, Moran GF, 2010. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genetics & Genomes 6: 305–317.

Torales SL, Rivarola M, Pomponio MF, Fernández P, Acuña CV, Marchelli P, Gonzalez S, Azpilicueta MM, Hopp HE, Gallo L, Paniego NB, Poltri SNM, 2012. Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina): assembly, annotation and molecular marker discovery. BMC genomics 13: 291.

Yasodha R, Sumathi R, Chezhian P, Kavitha S, Ghosh M, 2008. Eucalyptus microsatellites mined in silico: survey and evaluation. Journal of Genetics. 87(1): 21-25.

Zhou C, He X, Li F, Weng Q, Yu X, Wang Y, Li M, Shi J, Gan S, 2013. Development of 240 novel EST-SSRs in Eucalyptus L'Hérit. Molecular Breeding 1-5.

How to Cite
AcuñaC. V., VillalbaP., HoppH. E., & Marcucci PoltriS. N. (2014). Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species. Forest Systems, 23(3), 506-512.
Short communications