Current and future estimates for the fire frequency and the fire rotation period in the main woodland types of peninsular Spain: a case-study approach

  • Antonio Vázquez Centro de Investigación Forestal, CIFOR-INIA. Madrid.
  • José M. Climent Centro de Investigación Forestal, CIFOR-INIA. Madrid.
  • Luis Casais Universidad Complutense de Madrid UCM Facultad de Farmacia, Ciudad Universitaria, Madrid.
  • José R. Quintana Universidad Complutense de Madrid UCM Facultad de Farmacia, Ciudad Universitaria, Madrid.


Aim of study. Fire regimes are frequently dynamic and change as a function of the interactions between the three main fire drivers: fuels, ignitions and climatic conditions. We characterized the recent period (1974-2005) and performed estimates for the future fire regime

Area of study. We have considered five pine and another four woodland types by means of the analyses of 100 reference areas in peninsular Spain.

Material and methods. The estimates of the expected alterations in fire frequency and the fire rotation period were based on models previously developed for the climatic scenarios SRES A2 and B2.

Main results. The results point to the large variability in fire frequency and rotation periods between the woodland types as defined, and also among the reference areas delimited for each of them. Fire frequencies will increase for all woodland types while very relevant shortenings of the fire rotation periods are expected. For the 32 yr period analysed, rotation periods longer than 500 yr were obtained in 54% of the reference areas while this percentage would decrease to 31% in the B2 and to 29% in the A2 climatic scenario. In the most affected woodland type, P. pinaster, from a median rotation period of 83 yr it would decrease to 26 yr in the B2 and to 20 yr in the A2 climatic scenario.

Research highlights. We conclude that the predicted increases in fire activity will have adverse effects on some of the main Spanish woodland types due to the expected future disruptions in the fire regime.  

Keywords: Forest fires; fire regime; fire frequency; fire rotation period; climatic change.

Abbreviations used: SRES: Special Report on Emissions Scenarios; IPCC: Intergovernmental Panel on Climate Change; RA: Reference Areas.


Download data is not yet available.



AEMET, 2009. Generación de escenarios regionalizados de cambio climático para España. Report with contributions of: M Brunet, MJ Casado, de Castro M, Galán P, López JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, et al. Gobierno de España. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Medio Rural y Marino. Available at

Alvarez A, Gracia M, Vayreda J, Retana J, 2012. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manage 270: 282-290.

Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA, 2013. Defining pyromes and global syndromes of fire regimes. PNAS 110(16): 6442-6447.

Arnan X, Quevedo L, Rodrigo A, 2013. Forest fire occurrence increases the distribution of a scarce forest type in the Mediterranean Basin. Acta Oecologia-Int J Ecology 46: 39-47.

Bond WJ, Keeley JE, 2005. Fire as a global «herbivore»: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7): 387-394.

Bond WJ, van Wilgen BW, 1996. Fire and Plants. Population and Community Biology Series 14, Chapman & Hall, 263 pp.

Brotons L, Aquilue N, de Cáceres M, Fortin MJ, Fall A, 2013. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean Landscapes. Plos ONE 8(5): e62392.

Carnicer J, Coll C, Pons X, Ninyerola M, Vayreda J, Peñuelas J, 2014. Large-scale recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest successional advance as key regional drivers. Glob Ecol Biogeog 23(3): 371–384.

Carvalho A, Flannigan M, Logan K, Gowman L, Miranda AI, Borrego C, 2010. The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Clim Change 98: 177-197.

Climent J, Prada MA, Calama R, Chambel MR, de Ron DS, Alía R, 2008. To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95: 833‐842.

Davis FW, Burrows DA, 1994. Spatial simulation of fire regime in Mediterranean-Climate landscapes. In: The role of fire in Mediterranean-type ecosystems (Moreno J.M., Oechel, W.C., eds). Ecological Studies 107, Springer- Verlag, NY. pp. 117-139.

Díaz-Delgado R, Lloret F, Pons X, 2004. Statistical analysis of fire frequency models for Catalonia (NE Spain, 1975-1998) based on fire scar maps from Landsat MSS data. Int J Wildland Fire 13: 89-99.

Eugenio M, Verkaik I, Lloret F, Espelta JM, 2006. Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula). For Ecol Manag 231(1-3): 47-54.

Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM, 2009. Implications of changing climate for global wildland fire. Int J Wildland Fire 18: 483-507.

González JR, Palahí M, Trasobares A, Pukkala T, 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63: 169–176.

Heinselman ML, 1973. Fire in the virgin forest of the Boundary Waters Canoe area, Minnesota. Quaternary Research 3: 329-382.

IPCC, 2007. Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A, 2007:. Europe. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Eds ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson) pp. 541-580. Cambridge University Press: Cambridge, UK.

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the IPCC 5th Assessment Report. Chapter 23 Europe.

Keeley JE, 2012. Ecology and evolution of pine life histories. Ann For Sci 69:445-453.

Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, Mallinis G, Arianoutsou M, 2013. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire 22: 493–507.

Krawchuk MA, Moritz MA, 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92(1): 121-132.

Krawchuk ME, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K, 2009. Global Pyrogeography: the Current and Future Distribution of Wildfire. Plos ONE 4(4): e5102.

Le Houerou HN, 1987. Vegetation wildfires in the mediterranean basin: evolution and trends. Ecologia Mediterranea 13(4): 13-23.

Loepfe L, Martinez-Vilalta J, Piñol J, 2012. Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Change 115(3-4): 693-707.

Lung T, Lavalle C, Hiederer R, Dosio A, Bouwer LM, 2013. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob Environ Change 23: 522–536.

Martínez-Fernández J, Chuvieco E, Koutsias N, 2013. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat Hazards Earth Syst Sci 13: 311–327.

Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaza P, Xanthopoulos G, Mouillot F, Bilgili E, 2011. Landscape–wildfire interactions in Southern Europe: implications for landscape management. J Environ Manage 92: 2389-2402.

Moreno JM (Ed.), 2005. Evaluación preliminar de los impactos en España por efecto del cambio climático, ECCE Proyect. Ministerio de Medio Ambiente, Final Report. (Madrid, Spain).

Moreno JM, Vázquez A, Vélez R, 1998. Recent history of forest fires in Spain. In: "Large Forest Fires" Moreno, JM (ed.) Backhuys Publishers, Leiden, The Netherlands, 159-185.

Moreno MV, Chuvieco E, 2013. Characterising fire regimes in Spain from fire statistics. Int J Wildland Fire 22: 296–305.

Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J, 2006. Potential impact of climate change on fire risk in the Mediterranean area. Clim Resarch 31: 85-95.

Moritz MA, Parisien MA, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K, 2012. Climate change and disruptions to global fire activity. Ecosphere 3(6): UNSP 49.

Mouillot F, Rambal S, Joffre R, 2002. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob. Change Biol. 8: 423–437.

Moya D, Espelta JM, Verkaik I, López-Serrano FL, de las Heras J, 2007. Tree density and site quality influence on Pinus halepensis Mill. reproductive characteristics after large fires. Ann For Sci 64: 649–656.

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T,et al., 2000. Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 599 pp.

Ninyerola M, Pons X, Roure JM, 2005. Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra, Spain.

Oliveira SLJ, Pereira JMC, Carreiras JMB, 2012. Fire frequency analysis in Portugal (1975-2005), using Landsat-based burnt area maps. Int J Wildland Fire 21(1): 48-60.

Pausas JG, 2004. Changes in fire and climate in the eastern Iberian peninsula (Mediterranean basin). Clim Change 63: 337-350.

Pausas JG, Fernández-Muñoz S, 2012. Fire regime changes in the western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110: 215–226.

Pausas JG, Llovet J, Rodrigo A, Vallejo R, 2008. Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17: 713–723.

Pausas JG, Ribeiro E, 2013. The global fire–productivity relationship. Glob Ecol Biogeog 22: 728–736.

Piñol J, Terradas J, Lloret F, 1998. Climate warning, wildfire hazard and wildfire occurrence in coastal eastern Spain. Clim Change 38: 345-357.

Rego FC, 1991. Land use changes and wildfires. In 'Responses of forest ecosystems to environmental changes' (Eds. A Teller, P Mathy, JNR Jeffers). Elsevier Applied Science: London. pp. 367–373.

Riaño D, Moreno-Ruíz JA, Isidoro D, Ustin L, 2007. Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Pathfinder. Glob. Change Biol 13:40–50.

Rigolot E, 2004. Predicting postfire mortality of Pinus halepensis Mill. and Pinus pinea L. Plant Ecology 171(1-2): 139–151.

Rivas-Martínez S, 1987. Mapa de las series de vegetación de España (1:400000). Publ. Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional para la Conservación de la Naturaleza: Madrid.

Rodrigo A, Quintana V, Retana J, 2007. Fire reduces Pinus pinea distribution in the Northeastern Iberian Peninsula. Ecoscience 14(1):23-30[23:FRPPDI]2.0.CO;2

Rodrigo A, Retana J. Pico FX, 2004. Direct regeneration is not the only response of Mediterranean forest to large fires. Ecology 85(3): 716-729.

Rothermel RC, 1983. How to predict the spread and intensity of fires? USDA, Forest Service Gen. Tech. Rep. INT-143: Ogden, UT.

Ruiz-Benito P, Gomez-Aparicio L, Zavala MA, 2012. Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Diversity and Distributions 18(11): 1092-1106.

San-Miguel-Ayanz J, Moreno JM, Camia A, 2013. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For Ecol Manage 294: 11–22.

Schumacher S, Bugmann H, 2006. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12: 1435–1450.

Tapias R, Climent J, Pardos JA, Gil L, 2004. Life histories of Mediterranean pines. Plant Ecology 171:53-68.

Trabaud L, 1981. Man and tire: Impact on Mediterranean vegetation. In: ´Mediterranean-Type Shrublands´. (Eds. F. di Castri, D.W. Goodall, RL.Specht). Ecosystems of the World 11, Elsevier, Amsterdam, pp. 523-537.

Trabaud L, 1994. Wildland fire cycles and history in central southern France. In: Proceedings of the Second International Conference on Forest Fires Research, Coimbra (Portugal), November 1994, pp. 545-556.

Vázquez A, Moreno JM, 2001. Spatial distribution of forest fires in Sierra de Gredos (Central Spain). For Ecol Manage 147: 55-65.

Vázquez de la Cueva A, García del Barrio JM, Ortega M, Sánchez Palomares O, 2006. Recent fire regime in peninsular Spain in relation to forest potential productivity and population density. Int J Wildland Fire 15: 397-405.

Vázquez de la Cueva A, Quintana JR, Cañellas I, 2012. Fire activity projections in the SRES A2 and B2 climatic scenarios in peninsular Spain. Int J Wildland Fire 21: 653-665.

Vélez R, 1990. Algunas observaciones para una selvicultura preventiva de incendios forestales. Ecología, Fuera de Serie 1: 561–571.

Vilà-Cabrera A, Rodrigo A, Martinez-Vilalta J, Retana J, 2012. Lack of regeneration and climatic vulnerability to fire of Scots pine may induce vegetation shifts at the southern edge of its distribution. J Biogeog 39(3): 488-496.

How to Cite
VázquezA., ClimentJ. M., CasaisL., & QuintanaJ. R. (2015). Current and future estimates for the fire frequency and the fire rotation period in the main woodland types of peninsular Spain: a case-study approach. Forest Systems, 24(2), e031.
Research Articles