Epidemiological study of honeybee pathogens in Europe: The results of Castilla-La Mancha (Spain)

  • Maria Buendía Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF, Marchamalo, 19180 Guadalajara
  • Raquel Martín-Hernández Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF, Marchamalo, 19180 Guadalajara Fundación Parque Científico y Tecnológico de Albacete, INCRECYT, Albacete http://orcid.org/0000-0002-1730-9368
  • Concepción Ornosa Universidad Complutense de Madrid, Fac. Ciencias Biológicas, Dept. Biodiversidad, Ecología y Evolución, 28040 Madrid http://orcid.org/0000-0003-0615-0790
  • Laura Barrios CSIC, SGAI. Dept. de Estadística, 28006 Madrid http://orcid.org/0000-0003-2492-7372
  • Carolina Bartolomé Universidade de Santiago de Compostela, CIMUS, IDIS, Medicina Xenómica, 15782 Santiago de Compostela
  • Mariano Higes Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF, Marchamalo, 19180 Guadalajara http://orcid.org/0000-0001-7338-5851
Keywords: Apis mellifera, monitoring program, Nosema ceranae, Varroa destructor, Lotmaria passim, honey bee viruses


As a part of a Pilot Monitoring Program of honey bee health coordinated by the EURL (European Union Reference Laboratory) and according to the criteria established for Spain, 14 apiaries in Castilla-La Mancha were selected at random and sampled during the autumns of 2012-2014 to identify the most prevalent nosogenic agents, potentially those related to the honey bee colony collapse phenomenon. In all the apiaries studied, Nosema ceranae was the most prevalent pathogen detected over the three years, confirming the worldwide spread of this microsporidian, a pathogen that negatively affects honey bee health at an individual and colony level. Trypanosomatids were also very prevalent in honey bee colonies, although the majority of Trypanosomatids detected were not Crithidia mellificae but rather the genetically distinct Lotmaria passim lineage. We also detected Varroa destructor mites, and the particularly high prevalence in 2014 suggests a possible problem regarding mite control in field conditions that requires attention. In agreement with data from other regions, the BQCV and DWV were the most prevalent viruses in honey bee colonies and thus, the Varroa-DVW interaction may be an important cause of bee colony mortality. While there was little evidence of a relationship between the BQCV virus and N. ceranae under field conditions during 2012, this was not the case in 2013 and 2014. Finally, the AKI-complex or LSV-complex was not detected. The information obtained in this study should help orientate future plans for honey bee disease control.


Download data is not yet available.


Adjlane N, Haddad N, 2016. Effect of some honeybee diseases on seasonal mortality of Apis mellifera intermissa in Algeria apiaries. Proc Zool Soc 71 (1): 83-87. https://doi.org/10.1007/s12595-016-0188-5

Alaux C, Crauser D, Pioz M, Saulnier C, Le Conte Y, 2014. Parasitic and immune modulation of flight activity in honey bees tracked with optical countes. J Exp Biol 217 (19): 3416-3424. https://doi.org/10.1242/jeb.105783

Anderson DL, Trueman JWH, 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24 (3): 165-189. https://doi.org/10.1023/A:1006456720416

Antúnez K, Anido M, Garrido-Bailón E, Botías C, Zunino P, Martínez-Salvador A, Martín-Hernández R, Higes M, 2012. Low prevalence of honeybee viruses in Spain during 2006 and 2007. Res Vet Sci 93 (3): 1441-1445. https://doi.org/10.1016/j.rvsc.2012.03.006

Aubert M, Ball B, Fries I, Moritz R, Milani N, Bernardinelli I, 2008. Virology and the honey bee. European Commission Directorate-General for Research, Brussels, Belgium.

Bailey L, Woods RD, 1974. Three previously undescribed viruses from the honey bee. J Gen Virol 25 (2): 175-186. https://doi.org/10.1099/0022-1317-25-2-175

Bailey L, Carpenter JM, Woods RD, 1979. Egypt bee virus and Australian isolates of Kashmir bee virus. J Gen Virol 43 (3): 641-647. https://doi.org/10.1099/0022-1317-43-3-641

Bailey L, 1981. Honey bee pathology. Academic Press, London. 124 pp.

Bailey L, 1982. Viruses of honeybees. Bee World 63 (4): 165-173. https://doi.org/10.1080/0005772X.1982.11097891

Bernal J, Garrido-Bailon E, Del Nozal MJ, González-Porto AV, Martín-Hernández R, Diego JC, Jiménez JJ, Bernal JL, Higes M, 2010. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J Econ Entomol 103 (6): 1964-1971. https://doi.org/10.1603/EC10235

Betti MI, Wahl LM, Zamir M, 2014. Effects of infection on honey bee population dynamics: a model. PloS ONE 9 (10): e110237. https://doi.org/10.1371/journal.pone.0110237

BOE, 2006. Royal decree 608/2006, of 19 May, that establishes and regulates a national program for the control of honey bee diseases. Boletín Oficial del Estado (Spain) No. 131, 07/06/06.

Bordier C, Suchail S, Pioz M, Devaud JM, Collet C, Charreton M, Le Conte Y, Alaux C, 2017. Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. J. Insect Physiol 98: 47-54. https://doi.org/10.1016/j.jinsphys.2016.11.013

Botías C, Martín-Hernández R, Garrido-Bailón E, González-Porto A, Martínez-Salvador A, De La Rúa P, Meana A, Higes M, 2012. The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Res Vet Sci 93 (1): 150-155. https://doi.org/10.1016/j.rvsc.2011.08.002

Botías C, Martín-Hernández R, Barrios L, Meana A, Higes M, 2013. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet Res 44 (1): 25. https://doi.org/10.1186/1297-9716-44-25

Breeze TD, Bailey AP, Balcombe KG, Potts SG, 2011. Pollination services in the UK: How important are honeybees? Agric Ecosyst Environ 142 (3): 137-143. https://doi.org/10.1016/j.agee.2011.03.020

Cepero A, Ravoet J, Gómez-Moracho T, Bernal JL, Del Nozal MJ, Bartolomé C, Maside X, Meana A, González-Porto AV, de Graaf DC, Martín-Hernández R, Higes M, 2014. Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Res Notes 7 (1): 649. https://doi.org/10.1186/1756-0500-7-649

Cepero A, Martín-Hernández R, Prieto L, Gómez-Moracho T, Martínez-Salvador A, Bartolomé C, Maside X, Meana A, Higes M, 2015.Is Acarapis woodi a single species? A new PCR protocol to evaluate its prevalence. Parasitol Res 114 (2): 651-658. https://doi.org/10.1007/s00436-014-4229-6

Cepero A, Martín-Hernández R, Bartolomé C, Gómez-Moracho T, Barrios L, Bernal J, Martín MT, Meana A, Higes M, 2016. Passive laboratory surveillance in Spain: pathogens as risk factors for honey bee colony collapse. J Apic Res 54 (5): 411-419.

Chantawannakul P, Ward L, Boonham N, Brown M, 2006. A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J Invert Pathol 91 (1): 69-73. https://doi.org/10.1016/j.jip.2005.11.001

Chauzat MP, Cauquil L, Roy L, Franco S, Hendrikx P, Ribière-Chabert M, 2013. Demographics of the European Apicultural Industry. PLoS ONE 8 (11): e79018. https://doi.org/10.1371/journal.pone.0079018

Chen Y, Evans J, Feldlaufer M., 2006. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J Invert Pathol 92 (3): 152-159. https://doi.org/10.1016/j.jip.2006.03.010

Chen YP, Siede R, 2007. Honey bee viruses. Adv Virus Res 70: 33-80. https://doi.org/10.1016/S0065-3527(07)70002-7

Chen YP, Pettis JS, Corona M, Chen WP, Li CJ, Spivak M, Delaplane K, 2014. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog 10 (7): e1004261. https://doi.org/10.1371/journal.ppat.1004261

Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, vanEngelsdrop D, Evans JD, 2012. Pathogen webs in collapsing honey bee colonies. Plos ONE 7 (8): e43562. https://doi.org/10.1371/journal.pone.0043562

Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, et al., 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318 (5848): 283-287. https://doi.org/10.1126/science.1146498

Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P, 2012. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol 78 (4): 981-987. https://doi.org/10.1128/AEM.06537-11

Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, Bonnet M, 2012. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PloS ONE 7 (5): e37017. https://doi.org/10.1371/journal.pone.0037017

Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S, Le Conte Y, 2013. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invert Pathol 113 (1): 42-51. https://doi.org/10.1016/j.jip.2013.01.002

Emsen B, Guzman-Novoa E, Hamiduzzaman MM, Eccles L, Lacey B, Ruiz-Pérez RA, Nasr M, 2016. Higher prevalence and levels of Nosema ceranae than Nosema apis infections in Canadian honey bee colonies. Parasitol Res 115 (1):175-181. https://doi.org/10.1007/s00436-015-4733-3

Francis R, Kryger P, 2012. Single assay detection of Acute Bee Paralysis Virus, Kashmir Bee Virus and Israeli Acute Paralysis Virus. J Apic Sci 56 (1): 137-146. https://doi.org/10.2478/v10289-012-0014-x

Francis RM, Nielsen SL, Kryger P, 2013. Varroa-virus interaction in collapsing honey bee colonies. PloS ONE 8 (3): e57540. https://doi.org/10.1371/journal.pone.0057540

Francis RM, Amiri E, Meixner MD, Kryger P, Gajda A, Andonov S, Berg S, 2014. Effect of genotype and environment on parasite and pathogen levels in one apiary-a case study. J Apic Res 53 (2): 230-232. https://doi.org/10.3896/IBRA.

Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ, 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32 (3): 356-365. https://doi.org/10.1016/S0932-4739(96)80059-9

Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF, 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506 (7488): 364-366. https://doi.org/10.1038/nature12977

Garrido-Bailón E, Martín-Hernández R, Bernal J, Bernal JL, Martínez- Salvador A, Barrios L, Meana A, Higes M, 2010. The detection of israeli acute paralysis virus (IAPV), fipronil and imidacloprid in professional apiaries are not related with massive honey bee colony loss in Spain. Span J Agric Res 8 (6): 58- 661. https://doi.org/10.5424/sjar/2010083-1262

Garrido-Bailón ME, 2012. Repercusión potencial en la cabaña apícola española de agentes nosógenos detectados en colonias de "Apis mellifera iberiensis". Doctoral thesis. Univ. Complutense de Madrid, Madrid, Spain.

Garrido-Bailón E, Botías C, Martín-Hernández R, Salvador AM, Meana A, Higes M, 2012. Prevalencia de los principales agentes patógenos de Apis mellifera iberienses en la cabaña apícola española. Anales de la Real Academia de Ciencias Veterinarias de Andalucía Oriental 25: 109-130.

Goblirsch M, Huang ZY, Spivak M, 2013. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE 8 (3): e58165. https://doi.org/10.1371/journal.pone.0058165

Gómez-Moracho T, Bartolomé C, Bello X, Martín-Hernández R, Higes M, Maside X, 2015. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect Genet Evol 31: 87-94. https://doi.org/10.1016/j.meegid.2015.01.002

Granberg F, Vicente-Rubiano M, Rubio-Guerri C, Karlsson OE, Kukielka D, Belák S, Sánchez-Vizcaíno JM, 2013. Metagenomic detection of viral pathogens in spanish honeybees: co-infection by aphid lethal paralysis, Israel acute paralysis and Lake Sinai viruses. PLoS ONE 8 (2): e57459. https://doi.org/10.1371/journal.pone.0057459

Graystock P, Yates K, Evison SE, Darvill B, Goulson D, Hughes WO, 2013. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50 (5): 1207-1215. https://doi.org/10.1111/1365-2664.12134

Hatjina F, Tsoktouridis G, Bouga M, Charistos L, Evangelou V, Avtzis D, Meeus I, Brunain M, Smagghe G, de Graaf DC, 2011. Polar tube protein diversity among Nosema ceranae strains derived from a Greek honey bee health study. J Invertebr Pathol 108: 131-134. https://doi.org/10.1016/j.jip.2011.07.003

Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, del Nozal MJ, Jiménez JJ, Palencia PG, Meana A, 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10 (10): 2659-2669. https://doi.org/10.1111/j.1462-2920.2008.01687.x

Higes M, Martín-Hernández R, Garrido-Bailón E, González-Porto AV, García-Palencia P, Meana A, del Nozal MJ, Mayo R, Bernal JL, 2009. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1 (2): 110-113. https://doi.org/10.1111/j.1758-2229.2009.00014.x

Higes M, Martín-Hernández R, Meana A, 2010a. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41 (3): 375-392. https://doi.org/10.1051/apido/2010019

Higes M, Martín-Hernández R, Martínez-Salvador A, Garrido-Bailón E, González-Porto AV, Meana A, Bernal JL, del Nozal MJ, Bernal J, 2010b. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ Microbiol Rep 2 (2): 243-250. https://doi.org/10.1111/j.1758-2229.2009.00099.x

Higes M, Meana A, Bartolomé C, Botías C, Martín-Hernández R, 2013. Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environ Microbiol Rep 5 (1): 17-29. https://doi.org/10.1111/1758-2229.12024

Langridge DF, McGhee RB, 1967. Crithidia mellificae n. sp. an acidophilic trypanosomatid of the honey bee Apis mellifera. J Protozool 14 (3): 485-487. https://doi.org/10.1111/j.1550-7408.1967.tb02033.x

Li J, Chen W, Wu J, Peng W, An J, Schmid-Hempel P, Schmid-Hempel R, 2012. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int J Parasitol 42 (1): 49-61. https://doi.org/10.1016/j.ijpara.2011.10.005

Lodesani M, Costa C, Besana A, Dall'Olio R, Franceschetti S, Tesoriero D, Giacomo D, 2014. Impact of control strategies for Varroa destructor on colony survival and health in northern and central regions of Italy. J Apic Res 53 (1): 155-164. https://doi.org/10.3896/IBRA.

Maes PW, Rodrigues PA, Oliver R, Mott BM, Anderson KE, 2016. Diet‐related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol Ecol 25 (21): 5439-5450. https://doi.org/10.1111/mec.13862

MAGRAMA, 2012. Protocolo Programa de vigilancia piloto sobre las pérdidas de colonias de abejas. Ministerio de Agricultura, Ganadería y Medio Ambiente, Gobierno de España.

MAGRAMA, 2013. Protocolo Programa de Vigilancia Piloto sobre las pérdidas de colonias de abejas. Ministerio de Agricultura, Ganadería y Medio Ambiente, Gobierno de España.

Maharramov J, Meeus I, Maebe K, Arbetman M, Morales C, Graystock P, Zapata N, 2013. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. PLoS ONE 8 (12): e81475. https://doi.org/10.1371/journal.pone.0081475

Martin SJ, Hardy J, Villalobos E, Martín‐Hernández R, Nikaido S, Higes M, 2013. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep 5 (4): 506-510. https://doi.org/10.1111/1758-2229.12052

Martínez J, Leal G, Conget P, 2012. Nosema ceranae an emergent pathogen of Apis mellifera in Chile. Parasitol Res 111 (2): 601-607. https://doi.org/10.1007/s00436-012-2875-0

Martín-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, Higes M, 2007. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73 (20): 6331-6338. https://doi.org/10.1128/AEM.00270-07

Martín-Hernández R, Meana A, García-Palencia P, Marín P, Botías C, Garrido-Bailón E, Barrios L, Higes M, 2009. Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75 (8): 2554-2557. https://doi.org/10.1128/AEM.02908-08

Martín-Hernández R, Botías C, Bailón EG, Martínez-Salvador A, Prieto L, Meana A, Higes M, 2012. Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ Microbiol 14 (8): 2127-2138. https://doi.org/10.1111/j.1462-2920.2011.02645.x

Meeus I, De Graaf DC, Jans K, Smagghe G, 2010. Multiplex PCR detection of slowly envolving Trypanosomatids and Neogregarines in bumblebees using broad-range primers. J Appl Microbiol 109 (1): 107-115.

Mendoza Y, Antúnez K, Branchiccela B, Anido M, Santos E, Invernizzi C, 2014. Nosema ceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie 45 (2): 224-234. https://doi.org/10.1007/s13592-013-0241-6

Mondet F, de Miranda JR, Kretzschmar A, Le Conte Y, Mercer AR, 2014. On the front line: Quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog 10 (8): e1004323. https://doi.org/10.1371/journal.ppat.1004323

Morimoto T, Kojima Y, Yoshiyama M, Kimura K, Yang B, Peng G, Kadowaki T, 2013. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep 5 (1): 74-77. https://doi.org/10.1111/j.1758-2229.2012.00385.x

Nabian S, Ahmadi K, Shirazi MN, Sadeghian AG, 2011. First detection of Nosema ceranae, a microsporidian protozoa of European honeybees (Apis mellifera) in Iran. Iran J Parasitol 6 (3): 89.

OIE, 2008. Manual of standards for diagnostic test and vaccines. Office International des Epizooties. http://www.oie.int/eng/norms/mmanual/2008">http://www.oie.int/eng/norms/mmanual/2008

Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M, 2009. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1 (2): 131-135. https://doi.org/10.1111/j.1758-2229.2009.00018.x

Plischuk S, Meeus I, Smagghe G, Lange CE, 2011. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ Microbiol Rep 3 (5): 565-568. https://doi.org/10.1111/j.1758-2229.2011.00261.x

Porrini C, Mutinelli F, Bortolotti L, Granato A, Laurenson L, Roberts K, Sgolastra F, 2016. The status of honey bee health in Italy: results from the nationwide bee monitoring network. PloS ONE 11 (5): e0155411. https://doi.org/10.1371/journal.pone.0155411

Potts SG, Roberts SP, Dean R, Marris G, Brown MA, Jones R., Nemann P, Settele J, 2010. Declines of managed honey bees and beekeepers in Europe. J Apicult Res 49 (1): 15-22. https://doi.org/10.3896/IBRA.

Ratnieks FL, Carreck NL, 2010. Clarity on honey bee collapse? Science 327 (5962): 152-153. https://doi.org/10.1126/science.1185563

Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, de Graaf DC, 2013. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 8 (8): e72443. https://doi.org/10.1371/journal.pone.0072443

Rennie J, 1921. Isle of Wight disease in hive bees - Acarine disease: The organism associated with the disease Tarsonemus woodi, n. sp. T Roy Soc Edinburgh 52: 768-779. https://doi.org/10.1017/S0080456800016008

Rodríguez M, Vargas M, Antúnez K, Gerding M, Ovídio Castro F, Zapata N, 2014. Prevalence and phylogenetic analysis of honey bee viruses in the Biobío Region of Chile and their association with other honey bee pathogens. Chil J agric Res 74 (2): 170-177. https://doi.org/10.4067/S0718-58392014000200007

Rosenkranz P, Aumeier P, Ziegelmann B, 2010. Biology and control of Varroa destructor. J Invertebr Pathol 103: 96-119. https://doi.org/10.1016/j.jip.2009.07.016

Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, DeRisi JL, 2011. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PloS ONE 6 (6): e20656. https://doi.org/10.1371/journal.pone.0020656

Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, Graaf DC, Evans JD, 2015. Characterization of two species of Trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 62 (5): 567-583. https://doi.org/10.1111/jeu.12209

Simon-Delso N, San Martin G, Bruneau E, Minsart LA, Mouret C, Hautier L, 2014. Honeybee colony disorder in crop areas: the role of pesticides and viruses. PloS ONE 9 (7): e103073. https://doi.org/10.1371/journal.pone.0103073

Staveley JP, Law SA, Fairbrother A, Menzie CA, 2014. A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess 20 (2): 566-591. https://doi.org/10.1080/10807039.2013.831263

Stejskal M, 1965. Eine neue Gregarine, Fusiona geusi, n. sp., n. gen., n. fam., n. superfam., aus der Sudamerikanischen Schabe Pycnoscelus surinamensis L. 1758. Z Parasitenkd 26 (3): 215-220.

Stevanovic J, Stanimirovic Z, Genersch E, Kovacevic SR, Ljubenkovic J, Radakovic M, Aleksic N, 2011. Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 42: 49- 58. https://doi.org/10.1051/apido/2010034

Teixeira EW, Chen Y, Message D, Pettis J, Evans JD, 2008. Virus infections in Brazilian honey bees. J Invert Pathol 99 (1): 117-119. https://doi.org/10.1016/j.jip.2008.03.014

Van der Zee R, Gómez‐ Moracho T, Pisa L, Sagastume S, García‐ Palencia P, Maside X, Bartolomé C, Martín- Hernández R, Higes M, 2014. Virulence and polar tube protein genetic diversity of Nosema ceranae (Microsporidia) field isolates from Northern and Southern Europe in honeybees (Apis mellifera iberiensis). Environ Microbiol Rep 6 (4): 401-413. https://doi.org/10.1111/1758-2229.12133

VanEngelsdorp D, Meixner MD, 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103: 80-95. https://doi.org/10.1016/j.jip.2009.06.011

Vidau C, Panek J, Texier C, Biron DG, Belzunces LP, Le Gall M, El Alaoui H, 2014. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. J Invertebr Pathol 121: 89-96. https://doi.org/10.1016/j.jip.2014.07.002

Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, Paxton RJ, Osborne JL, 2014. So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE 9 (8): e103989. https://doi.org/10.1371/journal.pone.0103989

Yang B, Peng G, Li T, Kadowaki T, 2013. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. ‎Ecol Evol 3 (2): 298-311. https://doi.org/10.1002/ece3.464

Zander E, 1909. Tierische Parasiten als Krankenheitserreger bei der Biene. Münch 31: 196-204.

How to Cite
BuendíaM., Martín-HernándezR., OrnosaC., BarriosL., BartoloméC., & HigesM. (2018). Epidemiological study of honeybee pathogens in Europe: The results of Castilla-La Mancha (Spain). Spanish Journal of Agricultural Research, 16(2), e0502. https://doi.org/10.5424/sjar/2018162-11474
Animal health and welfare