The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.)

  • I. Vinkovic Vrcek Institute for Medical Reseacrh and Occupational Health
  • V. Samobor College of Agriculture at Križevci
  • M. Bojic Faculty of Pharmacy and Biochemistry. University of Zagreb
  • M. Medic-Saric Faculty of Pharmacy and Biochemistry. University of Zagreb
  • M. Vukobratovic College of Agriculture at Križevci
  • R. Erhatic College of Agriculture at Križevci
  • D. Horvat College of Agriculture at Križevci
  • Z. Matotan Podravka d.d. Koprivnica
Keywords: antioxidant activity, greenhouse, lycopene, plant production, total phenolics, vitamin C


The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the nutritional composition of grafted vegetables with emphasis on antioxidant properties. Therefore, the major objective of this study was to evaluate antioxidant components of tomatoes influenced by grafting technique. The tomato plants were grown in a greenhouse located at Kriz˘evci, Croatia. The cultivars ‘Efialto’, ‘Heman’, and ‘Maxifort’ were used as rootstocks, while ‘Tamaris’ was used as scion. Grafting resulted in increase of number of marketable fruits per plant by 30%. Content of total vitamin C and total phenolics significantly decreased after grafting. The concentration of total extractable phenolics in tomatoes ranged from 287.1 to 977.4 mg gallic acid equivalents (GAE) kg–1 fresh weight, whereas lycopene content ranged from 11.44 to 60.99 mg kg–1 fresh weight. Antioxidant activities determined by 1,1-diphenyl-2 picrylhydrazyl (DPPH) method of grafts were significantly different compared to their respective rootstocks. The overall results showed that tomato grafting on suitable rootstocks has positive effects on the cultivation performance, but decreases nutritional quality of tomatoes. 


Download data is not yet available.


Abushita A.A., Daood H.G., Biacs P.A., 2000. Changes in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agr Food Chem 48, 2075-2081. PMid:10888501

Arrigoni O., 1994. Ascorbate system in plant development. J Bioenerg Biomembr 26, 407-419. PMid:7844116

Benderitter M., Maupoil V., Vergely C., Dalloz F., Briot F., Rochette L., 1998. Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma:effects of iron chelators. Fundam Clin Pharmacol 12, 510-516. PMid:9794148

Brandt S., Pék Z., Barna E., Lugasi A., Helyes L., 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J Sci Food Agr 86, 568-572.

Cano A., Acosta M., Arnao M., 2003. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol Tech 28, 59-65.

Clinton S.K., 1998. Lycopene: chemistry, biology and implications for human health and disease. Nutr Rev 56, 35-51. PMid:9529899

Davies J.N., Hobson G.E., 1981. The constituents of tomato fruit. The influence of environment, nutrition, and genotype. Crit Rev Food Sci Nutr 15, 205-280. PMid:7030623

De Serrano J.Q., De Gonzalez L., Solomons N.W., 1993. The partition of ascorbic and dehydroascorbic acid in vitamin C containing Guatemalan food. Food Chem 47, 87-92.

Dixon R.A., Paiva N.L., 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085-1097. PMid:12242399 PMCid:160915

Dorais M., Ehret D.L., Papadopoulos A.P., 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7, 231-250.

Dumas Y., Dadomo M., Di Lucca G., Grolier P., 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agr 83, 369-382.

Flores F.B., Sánchez-Bel P., Estañ M.T., Martínezrodríguez M.M., Moyano E., Morales B., Campos J.F., García-Abellán J.O., Egea M.I., Fernández-García N., Romojaro F., Bolarín M.C., 2010. The effectiveness of grafting to improve tomato fruit quality. Sci Hort 125, 211-217.

García N.F., Carvajal M., Olmos E., 2004. Graft union formation in tomato plants: Peroxidase and catalase involvement. Ann Bot 93, 53-60. PMid:14630693

George B., Kaur C., Khurdiya D.S., Kapoor H.C., 2004. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem 84, 45-51.

Giovannucci E., 1999. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Nat Cancer Inst 91, 317-331. PMid:10050865

Gyamfi M.A., Yonamine M., Aniya Y., 1999. Freeradical scavenging action of medicinal herbs from Ghana-Thonningia sanguinea on experimentally-induced liver injuries. Gen Pharmacol 32, 661-667.

Halevy S., Koth H., Guggenheim K., 1957. The vitamin and mineral content of fruits and vegetables grown in Israel. Brit J Nutr 11, 409-413. PMid:13489150

Helyes L., Lugasi A., Pogonyi A., Pek Z., 2009. Effect of variety and grafting on lycopene content of tomato (Lycopersicon lycopersicum L. Karsten) fruit. Acta Aliment 38, 27-34.

Jiménez A., Creissen G., Kular B., Firmin J., Robinson S., Verhoeyen M., Mullineaux P., 2002. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214, 751-758. PMid:11882944

Joy R.W., Patel K.R., Thorpe T.A., 1988. Ascorbic acid enhancement of organogenesis in tobacco callus. Plant Cell Tiss Org Cult 13, 219-228.

Khah E.M., Tsouvaltzis P.I., Siomos A.S., Dogras K.C., 2003. The effect of the two tomatoes grafting on the performance, earliness and fruit quality. Proceedings of the 21st Pan-Hellenic Congress of the Greek Society for Horticultural Science, Ioannina, Greece, pp. 51-55.

Khah E.M., Kakava E., Mavromatis A., Chachalis D., Goulas C., 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill) in greenhouse and open-field. J Appl Hort 8, 3-7.

King S.R., Davis A.R., Zhang X., Crosby K., 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hort 127, 106-111.

Lee J.M., 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hort Sci 29, 235-239.

Lee J.M., Kubota C., Tsao S.J., Hoyos Echevarria P., Morra L., Oda M., 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hort 127, 93-105.

Martínez-Rodríguez M.M., Estañ M.T., Moyano E., García-Abellán J.O., Flores F.B., Campos J.F., Al-Azzawi M.J., Flowers T.J., Bolarín M.C., 2008. The effectiveness of grafting to improve salt tolerance in tomato when an "excluder" genotype is used as scion. Environ Exp Botany 63, 392-401.

Martínez-Valverde I., Periago M.J., Provan G., Chesson A., 2002, Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agr 82, 323-330.

Pogonyi A., Pék Z., Helyes L., Lugasi A., 2005. Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Aliment 34(4), 453-462.

Raffo A., Leonardo C., Fogliano V., Ambrosino P., Salucci M., Gennaro L., Bugianesi R., Giuffrida F., Quaglia G., 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J Agr Food Chem 50, 6550-6556. PMid:12381148

Raffo A., La Malfa G., Fogliano V., Maiani G., Quaglia G., 2006. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compos Anal 19, 11-19.

Rivard C.L., Louws F.J., 2008. Grafting to manage soilborne diseases in heirloom tomato production Hortscience 43, 2104-2111.

Rouphael Y., Schwarz D., Krumbein A., Colla G., 2010. Impact of grafting on product quality of fruit vegetables. Sci Hort 127, 172-179.

Sadler G., Davis J., Dezman D., 1990. Rapid extraction of lycopene and ®-carotene from reconstituted tomato paste and pink grapefruit homogenates. J Food Sci 55, 1460-1461.

Sharma S.K., Le Maguer M., 1996. Lycopene in tomatoes. Ital J Food Sci 2, 107-113.

Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Yoshimura K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53, 1305-1319. PMid:11997377

Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16, 144-158.

Tabata K., Oba K., Suzuki K., Esaka M., 2001. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27, 139-148. PMid:11489191

Vanderslice J.T., Higgs D.J., Hayes J.M., Block G., 1990. Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. J Food Comp Anal 3, 105-118.

Wadano A., Azeta M., Itotani S., Kanda A., Iwaki T., Taira T., Fujii Y., Nishiura Y., Murase H., Honami N., 1999. Change of ascorbic acid level after grafting of tomato seedlings. Z Naturforsch 54, 830-833.

How to Cite
Vinkovic VrcekI., SamoborV., BojicM., Medic-SaricM., VukobratovicM., ErhaticR., HorvatD., & MatotanZ. (2011). The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Spanish Journal of Agricultural Research, 9(3), 844-851.
Plant production (Field and horticultural crops)