Determination of soluble solids content in Prunus avium by Vis/NIR equipment using linear and non-linear regression methods

  • Victoria Lafuente Consejo Superior de Investigaciones Científicas (CSIC), Estación Experimental de Aula Dei, Dept. Nutrición Vegetal. Avda. Montaña 1005, 50009 Zaragoza
  • Luis J. Herrera Universidad de Granada, Dept. Arquitectura y Tecnología de los Computadores. C/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada
  • Jesús Val Consejo Superior de Investigaciones Científicas (CSIC), Estación Experimental de Aula Dei, Dept. Nutrición Vegetal. Avda. Montaña 1005, 50009 Zaragoza
  • Razvan Ghinea Universidad de Granada, Dept. Óptica, Campus de Fuentenueva s/n, 18071 Granada
  • Angel I. Negueruela Universidad de Zaragoza, Dept. Física Aplicada, C/ Pedro Cerbuna 12, 50009 Zaragoza
Keywords: PLS, LS-SVM, selection variables


Aim of study: Developing models to determine soluble solids content (SSC) in cherry trees by means of Vis/NIR spectroscopy.

Area of study: The Spanish Autonomous Community of Aragón (Spain).

Material and methods: Vis/NIR spectroscopy was applied to Prunus avium fruit ‘Chelan’ (n=360) to predict total SSC using a range 400-2420 nm. Linear (PLS) and nonlinear (LSSVM) regression methods were applied to establish prediction models.

Main results: The two regression methods applied obtained similar results (Rcv2=0.97 and Rcv2=0.98 respectively). The range 700-1060 nm attained better results to predict SSC in different seasons. Forty variables selected according to the variable selection method achieved Rcv2 value, 0.97 similar than full range.

Research highlights: The development of this methodology is of great interest to the fruit sector in the area, facilitating the harvest for future seasons. Further work is needed on the development of the NIRS methodology and on new calibration equations for other varieties of cherry and other species.


Download data is not yet available.


Alamar MC, Bobelyn E, Lammertyn J, Nicolaï B, Moltó E, 2007. Calibration transfer between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids contents of Apple. Postharvest Biol Technol 45: 38-45.

Altieri G, Genovese F, Tauriello A, Di Renzo G, 2017. Models to improve the non-destructive analysis of persimmon fruit properties by Vis/NIR spectrometry. J Sci Food Agric 97: 5302-5310.

Carlini P, Massantini R, Mencarelli F, 2000. Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. J Agric Food Chem 48: 5236-5242.

Chauchard F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V, 2004. Application of LS-LVM to non linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemom Intell Lab Syst 71: 141-150.

Clark CJ, McGlone VA, Requejo C, White A, Woolf, AB, 2003. Dry matter determination in Hass avocado by NIR spectroscopy. Postharvest Biol Technol 29: 300-307.

Escribano S, Biasi WV, Lerud R, Slaughter, DC, Mitchman, EJ, 2017. Non-destructive prediction of soluble solids and dry matter content using NIR spectroscopy and its relationship with sensory quality in sweet cherries. Postharvest Biol Technol 128: 112-120.

Hamshidi B, Minaei S, Mohajerani E, Ghassemian, A, 2012. Reflectance Vis/NIR spectroscopy for non-destructive taste characterization of Valencia oranges. Comput Electron Agric 85: 64-69.

Jha SN, Narsaiah K, Jaiswal R, Bhardwaj M, Gupta R, Kumar R, Sharma R, 2014. Nondestructive prediction of maturity of mango using near infrared spectroscopy. J Food Eng 124: 152-157

Lafuente V, Herrera LJ, Pérez MM, Val J, Negueruela I, 2014. Firmness prediction in Prunus persica 'Calrico' peaches by visible/short wave near infrared spectroscopy and acoustic measurements using optimised linear and non-linear chemometric models. J Sci Food Agric 95: 2033-2040.

Li J, Huang W, Zhao C, Zhang,B, 2013. A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. J Food Eng 116: 324-332.

Li X, Yi S, He S, Lv Q, Xie R, Zheng Y, Deng L, 2016. Identification of pummelo cultivars by using Vis/NIR spectra and pattern recognition methods. Precis Agric 17: 365-374.

Lu R, 2001. Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. T ASAE 44 (5): 1265-1271.

Ncama K, Linus-Opara U, Zeray-Tesfay S, Amos-Fawole O, Samukelo-Magwaza L, 2017. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of 'Valencia' orange (Citrus sinensis) and 'Star Ruby' grapefruit (Citrus x paradise Macfad). J Food Eng 193: 86-94.

Nicolaï BM, Theron KI, Lammertyn J, Kernel PLS, 2006. Regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom Intell Lab Syst 85: 243-252.

Nicolaï BM, Verlinden BE, Desmet M, Saevels S, Theron K, Cubeddu R, Pifferi A, Torricelli A, 2008. Time-resolved and continuous wave NIR reflectancespectroscopy to predict firmness and soluble solids content of Conferencepears. Postharvest Biol Technol 47: 68-74.

Pérez-Marín D, Garrido-Varo A, Guerrero JE, 2007. Non-linear regression methods in NIRS quantitative analysis. Talanta 72: 28-42.

Qing Z, Ji B, Zude M, 2007. Wavelength selection for predicting physicochemical properties of apple fruit based on near-infrared spectroscopy. J Food Qual 30: 511-526.

Ribera-Fonseca A, Noferini M, Jorquera-Fontena E, Rombolá AD, 2016. Assessment of technological maturity parameters and anthocyanins in berries of cv. Sangiovese (Vitis vinifera L.) by a portable vis/NIR device. Sci Hortic 209: 229-235.

Rossi F, Lendasse A, François D, Wertz V, Verleysen M, 2006. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom Intell Lab Syst 80: 215-226.

Sánchez MT, De la Haba MJ, Benítez-López M, Fernández-Novales J, Garrido-Varo A, Pérez-Marín D, 2012. Non-destructive characterization and quality control on intact strawberries based on NIR spectral data. J Food Eng 110: 102-108.

Shao Y, He Y, Bao Y, Mao J, 2008. Near- Infrared spectroscopy for classification of oranges and prediction of the sugar content. Int J Food Prop 12: 644-658.

Shuxiang F, Baohua Z, Jiangbo L, Wenqian H,Chaopeng W, 2016. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosyst Eng 143: 9-19.

Tilahun S, Park D, Seo M, Hwang I, Kim S, Choi H, Jeong Ch, 2018. Prediction of lycopene and B-carotene in tomatoes by portable chroma-meter and Vis/NIR spectra. Postharvest Biol Technol 136: 50-56.

Tiwari G, Slaughter DC, Cantwell M, 2013. Nondestructive maturity determination in green tomatoes using a handheld visible and near infrared instrument. Postharvest Biol Technol 86: 221-229.

Torres C, León L, Sánchez-Contreras J, 2016. Spectral fingerprints during sun injury development on the tree in Granny Smith apples: A potential non-destructive prediction tool during the growing season. Sci Hortic 209: 165-172.

Travers S, Bertelsen M, Petersen KK, Kucheryavskiy SV, 2014. Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy. LWT-Food Sci Technol 59: 1107-1113.

Williams PC, 2001. Implementation of near-infrared technology. In: Near-infrared technology in the agricultural and food industries; Williams PC and Norris KH (eds). pp: 145-169. Am Assoc of Cereal Chem, St Paul, MN, USA.

Wold HOA, 1982. Soft modeling: The basic design and some extensions. In: Systems under Indirect Observations: Part II; Joreskog KG & Wold HOA (Eds.), North-Holland, Amsterdam, pp: 1-54.

Xiaobo Z, Jiewen Z, Yanxiao L, 2007. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of 'Fuji' apple based on BiPLS and FiPLS models. Vibrational Spec 44: 220-227.

Xiaobo Z, Jiewen Z, Povey M, Holmes M, Hanpin M, 2010. Variables selection methods in near-infrared spectroscopy. Anal Chim Acta 667: 14-32.

Zhang P, Xue Y, Li J, Feng X, Wang B, 2013. Research on non-destructive measurement of firmness and soluble tannin content of 'Mopanshi' Persimmon using Vis/NIR difusse reflection spectroscopy. Acta Hortic 996: 447-452.

Zhang D, Lu X, Wang Q, Tian X, Li L, 2019. The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by Vis-NIR spectroscopy. Food Anal Methods 12: 136-147.

Zude M, Herold B, Roger JM, Bellon-Maurel V, Landahl S, 2006. Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. J Food Eng 77: 254-260.

How to Cite
LafuenteV., HerreraL. J., ValJ., GhineaR., & NegueruelaA. I. (2020). Determination of soluble solids content in Prunus avium by Vis/NIR equipment using linear and non-linear regression methods. Spanish Journal of Agricultural Research, 17(4), e0207.
Agricultural engineering