Evaluation of poultry manure and goat cheese whey anaerobic co-digestion

  • Juan L. Ramos-Suárez Universidad de La Laguna (ULL), Sección de Ingeniería Agraria de la Escuela Politécnica Superior de Ingeniería (EPSI), Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2. 38071 La Laguna (Tenerife)
  • Claudia L. Vargas-Avendaño Universidad de La Laguna (ULL), Sección de Ingeniería Agraria de la Escuela Politécnica Superior de Ingeniería (EPSI), Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2. 38071 La Laguna (Tenerife)
  • Javier Mata-González Universidad de La Laguna (ULL), Sección de Ingeniería Agraria de la Escuela Politécnica Superior de Ingeniería (EPSI), Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2. 38071 La Laguna (Tenerife)
  • Ángeles Camacho-Pérez Universidad de La Laguna (ULL), Sección de Ingeniería Agraria de la Escuela Politécnica Superior de Ingeniería (EPSI), Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2. 38071 La Laguna (Tenerife)
Keywords: anaerobic digestion, biogas, renewable energy, livestock waste, economic analysis


Hen droppings (HD) and Goat Cheese Whey (GCW) are two difficult substrates to be treated by anaerobic digestion due to their characteristics; however, their co-digestion offers the possibility of successfully treating these substrates together. The goal of this study was to evaluate the anaerobic co-digestion of HD and GCW at laboratory scale in order to determine biogas potential and possible operational problems before extrapolating results to a full-scale biogas plant. The potential methane production of HD, GCW and a mixture of both substrates was studied in batch mode, whereas the co-digestion of the mixture of HD and GCW was also studied in semi-continuous mode in a continuously stirred tank reactor. Results showed that the addition of GCW to HD increased methane production compared to HD alone; however, GCW alone showed the highest methane potential. In semi-continuous mode, the mixture of GCW and HD showed high biogas and methane yields (582.0±29.5 Lbiogas kg VS-1 and 381.2±19.0 LCH4 kg VS-1, respectively), although intense foaming incidents occurred. The composition of both substrates is complementary for their co-digestion and it improved the energy yield of the process. However, the economic viability of a biogas plant of 30 kWe, designed for treating HD and GCW, would be economically feasible only with subsidies for the investment and in the low range of investment costs for small scale biogas plants.


Download data is not yet available.


Al Seadi T, Lukehurst C, 2012. Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy. http://task37.ieabioenergy.com/files/daten-redaktion/download/

Antonelli J, Lindino CA, Rodrigues de Azevedo JC, Melegari de Souza N, Cremonez PA, Rossi E, 2016. Biogas production by the anaerobic digestion of whey. Rev Ciênc Agrár 39: 463-467. https://doi.org/10.19084/RCA15087

APHA, 1992. Métodos normalizados para el análisis de aguas potables y residuales. Díaz de Santos S.A., Madrid, Spain. 1816 pp.

Bayrakdar A, Önder Çalli B, 2017. Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresour Technol 244: 816-823. https://doi.org/10.1016/j.biortech.2017.08.047

Beszédes S, László Z, Szabó G, Hodúr C, 2010. The possibilities of bioenergy production from whey. J Agric Sci Technol 4: 62-68.

Biogas3, 2014. Small Biogas Web Application. http://smallbiogas.biogas3.eu/Acceso.aspx [27.02.2018].

Carlini M, Castellucci S, Moneti M, 2015. Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia 82: 811-818. https://doi.org/10.1016/j.egypro.2015.11.817

Carvalho F, Prazeres AR, Rivas, J, 2013. Cheese whey wastewater: Characterization and treatment. Sci Total Environ 445-446: 385-396. https://doi.org/10.1016/j.scitotenv.2012.12.038

Chatzipaschali AA, Stamatis AG, 2012. Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects. Energies 5: 3492-3525. https://doi.org/10.3390/en5093492

Comino E, Vincenzo A. Riggio VA, Rosso M, 2012. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol 114: 46-53. https://doi.org/10.1016/j.biortech.2012.02.090

Deublein D, Steinhayser A, 2008. Biogas from waste and renewable resources. An introduction. Wiley VCH, Weinheim, Germany. 450 pp. https://doi.org/10.1002/9783527621705

Dupuis I, 2015. Evaluación de subproductos agroalimentarios para la alimentación animal en Canarias: análisis geográfico, de viabilidad y desarrollo metodológico. Instituto Canario de Investigaciones Agrarias (ICIA), San Cristóbal de La Laguna, Spain. 132 pp.

Escalante H, Castro L, Amaya MP, Jaimes L, Jaimes-Estévez J, 2018. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manage 71: 711-718. https://doi.org/10.1016/j.wasman.2017.09.026

Evans EA, Evans KM, Ulrich A, Ellsworth S, 2011. Anaerobic processes. Water Environ Res 83: 1285-1332. https://doi.org/10.2175//106143011X13075599869335

Gobierno de Canarias, 2017. Anuario Energético de Canarias 2016. http://www.gobiernodecanarias.org [25.07.18].

Gobierno de Canarias, 2018. Subvenciones durante el ejercicio 2018 para la mejora de la eficiencia energética y el uso de energías renovables en empresas y edificios residenciales, cofinanciadas con FEDER en el ámbito del Programa Operativo de Canarias. https://sede.gobcan.es/ceicc/tramites/5174 [28.12.18].

Hansen KH, Angelidaki I, Ahring BK, 1998. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1): 5-12. https://doi.org/10.1016/S0043-1354(97)00201-7

Hublin A, Zokic TI, Zelic B, 2012. Optimization of biogas production from co-digestion of whey and cow manure. Biotechnol Bioprocess Eng 17: 1284-1293. https://doi.org/10.1007/s12257-012-0044-z

Jasko J, Skripsts E, Dubrovskis V, Zabarovskis E, Kotelenecs V, 2011. Biogas production from cheese whey in two phase anaerobic digestion. Engineering for Rural Development Conf., Jelgava, Latvia.

Kavacik B, Topaloglu B, 2010. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy 34: 1321-1329. https://doi.org/10.1016/j.biombioe.2010.04.006

Klavon KH, Lansing SA, Mulbry W, Moss AR, Felton G, 2013. Economic analysis of small-scale agricultural digesters in the United States. Biomass Bioenergy 54: 36-45. https://doi.org/10.1016/j.biombioe.2013.03.009

Kothari R, Pandey AK, Kumar S, Tyagi VV, Tyagi SK, 2014. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew Sust Energ Rev 39: 174-195. https://doi.org/10.1016/j.rser.2014.07.011

Kougias PG, Angelidaki I, 2018. Biogas and its opportunities - A review. Front Environ Sci Eng 12: 14. https://doi.org/10.1007/s11783-018-1037-8

Kougias PG, Boe K, Angelidaki I, 2013a. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors. Bioresour Technol 144: 1-7. https://doi.org/10.1016/j.biortech.2013.06.028

Kougias PG, Tsapekos P, Boe K, Angelidaki I, 2013b. Antifoaming effect of chemical compounds in manure biogas reactors. Wat Res 47: 6280-6288. https://doi.org/10.1016/j.watres.2013.07.045

Kougias PG, Boe K, O-Thong S, Kristensen LA, Angelidaki I, 2014. Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Sci Technol 69: 889-895. https://doi.org/10.2166/wst.2013.792

Lo KV, Liao PH, 1986. Digestion of cheese whey with anaerobic rotating biological contact reactors. Biomass 10: 243-252. https://doi.org/10.1016/0144-4565(86)90001-6

Marchioro V, Steinmetz RLR, Amaral AC, Taís C, Gaspareto TC , Treichel H, Kunz A, 2018. Poultry litter solid state anaerobic digestion: Effect of digestate recirculation intervals and substrate/inoculum ratios on process efficiency. Front Sustain Food Syst 2: 46. https://doi.org/10.3389/fsufs.2018.00046

Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B, 2018. Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy 108: 439-446. https://doi.org/10.1016/j.biombioe.2017.10.050

Niu Q, Qiao W, Qiang H, Hojo T., Li YY, 2013. Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: Stability, inhibition and recovery. Bioresour Technol 137: 358-367. https://doi.org/10.1016/j.biortech.2013.03.080

Omie, 2018. Informe de Precios 2018. OMI-Polo Español S.A. http://www.omie.es/inicio/publicaciones/informe-anual [07.03.2019].

Parkin GF, Owen WF, 1986. Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112: 867-920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)

Poeschl M, Ward S, Owende P, 2010. Prospects for expanded utilization of biogas in Germany. Renew Sust Energ Rev 14: 1782-1797. https://doi.org/10.1016/j.rser.2010.04.010

Powell N, Broughton A, Pratt C, Shilton A, 2013. Effect of whey storage on biogas produced by co-digestion of sewage sludge and whey. Environ Technol 34: 2743-2748. https://doi.org/10.1080/09593330.2013.788042

Prazeres AR, Carvalho F, Rivas J, 2012. Cheese whey management: A review. J Environ Manage 110: 48-68. https://doi.org/10.1016/j.jenvman.2012.05.018

Rajagopal R, Massé DI, Singh G, 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143: 632-641. https://doi.org/10.1016/j.biortech.2013.06.030

Ramos-Suárez JL, García Cuadra F, Acién FG, Carreras N, 2014. Benefits of combining anaerobic digestion and amino acid extraction from Microalgae. Chem Eng J 258: 1-9. https://doi.org/10.1016/j.cej.2014.07.086

Rico C, Diego R, Valcarce A, Rico JL, 2014. Biogas production from various typical organic wastes generated in the region of Cantabria (Spain): methane yields and co-digestion tests. SGRE 5: 128-136. https://doi.org/10.4236/sgre.2014.56012

Ripley LE, Boyle WC, Converse JC, 1986. Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 58 (5): 406-411.

Schattauer A, Weiland P, 2004. Handreichung Biogasgewinnung und -nutzung (Guidelines of biogas production and use). Fachagentur Nachwachsende Rohstoffe e.V., Gülzow, Germany. 233 pp.

Scheftelowitz M, Thrän D, 2016. Unlocking the energy potential of manure - An assessment of the biogas production potential at the farm level in Germany. Agriculture 6: 20. https://doi.org/10.3390/agriculture6020020

SNV & FACT Foundation, 2014. Productive biogas: Current and future development. Five case studies across Vietnam, Uganda, Honduras, Mali and Peru. SNV Corporate Office Renewable Energy and FACT Foundation, Burkina Faso. 109 pp.

Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B, 2000. Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126: 1076-1081. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1076)

VDI, 2006. VDI Guideline 4630, Fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data and fermentation tests. Verein Deutscher Ingenieure, Düsseldorf.

Weiland P, 2010. Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85: 849-860. https://doi.org/10.1007/s00253-009-2246-7

Yan JQ, Liao PH, Lo KV, 1988. Methane production from cheese whey. Biomass 17: 185-202. https://doi.org/10.1016/0144-4565(88)90113-8

How to Cite
Ramos-SuárezJ. L., Vargas-AvendañoC. L., Mata-GonzálezJ., & Camacho-Pérez Ángeles. (2019). Evaluation of poultry manure and goat cheese whey anaerobic co-digestion. Spanish Journal of Agricultural Research, 17(2), e0302. https://doi.org/10.5424/sjar/2019172-14577
Agricultural environment and ecology