Oral and contact toxicity of the extract obtained with hexane from Achyrocline satureioides on larvae and adult honey bees

  • Diana C. Pimentel-Betancurt National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Microbiology and Immunology. X5804BYA Río Cuarto
  • Natalia V. Tonello National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Chemistry. X5804BYA Río Cuarto
  • Francisco Padilla-Alvarez University of Córdoba, Campus of Rabanales, Dept. Zoology. 14071 Córdoba
  • María F. Paletti-Rovey National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Microbiology and Immunology. X5804BYA Río Cuarto
  • María M. Oliva National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Microbiology and Immunology. X5804BYA Río Cuarto
  • Juan M. Marioli National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Chemistry. X5804BYA Río Cuarto
Keywords: Apis mellifera, antibacterial activity, hexanic extract, Paenibacillus larvae


Aim of study: To evaluate the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on Paenibacillus larvae - a gram-positive spore-forming bacillus that affects the larval stage and causes American Foulbrood (AFB) - and its oral and contact toxicity on larvae and adult honey bees.

Area of study: A. satureioides plants were collected in Santa Monica (32° 05’ 29” S, 64° 36’ 54” W, Córdoba. Argentina). The larvae and adults of Apis mellifera were obtained from the experimental apiary of the University of Córdoba, Spain.

Material and methods: P. larvae 9 was previously isolated and identified in the Laboratory of General Microbiology (Dept. of Microbiology, National University of Río Cuarto, Argentina). The HE was obtained by liquid-liquid extraction. The minimum inhibitory concentration (MIC) of HE was determined by a microdilution method. This concentration and 2 ½ MIC were used for in vitro toxicity tests. Oral toxicity was tested on larvae, feeding them with both concentrations of the HE, while on adult bees the HE was spread to determine contact toxicity.

Main results: The HE showed antimicrobial activity, the MIC obtained was 0.4 μg/mL. The HE presented very low toxicity at the MIC and 2 ½ MIC, with survival percentages to be around 95% for adult bees and larvae.

Research highlights: The results show that this extract could be used for the development of an alternative product for a safe and effective treatment of AFB.


Download data is not yet available.

Author Biography

Diana C. Pimentel-Betancurt, National University of Río Cuarto, Faculty of Exact, Physico-Chemical and Natural Sciences, Dept. Microbiology and Immunology. X5804BYA Río Cuarto


Albo G, Henning C, Ringuelet J, Reynaldi F, De Giusti M, Alippi A, 2003. Evaluation of some essential oils for the control and prevention of American Foulbrood disease in honey bees. Apidologie 34: 417-437. https://doi.org/10.1051/apido:2003040

Alippi A, López A, Reynaldi F, Grasso D, Aguilar O, 2007. Evidence for plasmid-mediated tetracycline resistance in Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees. Vet Microbiol 125: 290-303. https://doi.org/10.1016/j.vetmic.2007.05.018

Ansari M, Al-Ghamdi A, Usmani S, Al-Waili N, Nuru A, Sharma D, et al., 2015. In vitro evaluation of the effects of some plant essential oils on Paenibacillus larvae, the causative agent of American foulbrood. Biotechnol Biotechnol Equip 30 (1): 49-55. https://doi.org/10.1080/13102818.2015.1086690

Antúnez K, Harriet J, Gende L, Maggi M, Eguaras M, Zunino P, 2008. Efficacy of natural propolis extract in the control of American Foulbrood. Vet Microbiol 131: 324-331. https://doi.org/10.1016/j.vetmic.2008.04.011

Arredondo MF, Blasina F, Echeverry C, Morquio A, Ferreira M, Abin-Carriquirv JA, et al., 2004. Cytoprotection by Achyrocline satureioides (Lam) D.C. and some of its main flavonoids against oxidative stress. J Ethnopharmacol 91: 13-20. https://doi.org/10.1016/j.jep.2003.11.012

Barioni E, Santin J, Daufenback I, Rodrigues S, Ferraz De Paula V, Wagner T, et al., 2013. Achyrocline satureioides (Lam.) D.C. hydroalcoholic extract inhibits neutrophil functions related to innate host defense. Evid-Based Compl Altern Med 2013: art 787916. https://doi.org/10.1155/2013/787916

Bastos E, Simone M, Jorge D, Soares A, Spivak M, 2008. In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J Invertebr Pathol 97: 273-281. https://doi.org/10.1016/j.jip.2007.10.007

Boligon A, Faccim T, Zadra M, Piana M, Filipi C, Pedroso V, et al., 2013. Antimicrobial activity of Scutia buxifolia against the honeybee pathogen Paenibacillus larvae. J Invertebr Pathol 112: 105-107. https://doi.org/10.1016/j.jip.2012.11.009

Casero C, Machín F, Méndez Álvarez S, Demo M, Ravelo A, Pérez Hernández N, et al., 2015. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides. J Nat Prod 78: 93-102. https://doi.org/10.1021/np500735f

Cezarotto V, Giacomelli S, Mack J, Barin J, Silva U, Linares C, 2011. Seasonal variation, chemical composition and antimicrobial activity of essential oil of Achyrocline satureioides (Lam.) D.C. Lat Am J Pharm 30: 1536-1541.

Chaimanee V, Thongtue U, Sornmai N, Songsri S, Pettis J, 2017. Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults. J Appl Microbiol 123 (5): 1160-1167. https://doi.org/10.1111/jam.13579

Coloma J, 2009. Evaluación "in vitro" de la actividad antifúngica de los alcaloides del agua de cocción del proceso de desamargado del Chocho (Lupinus mutabilis Sweet). Tesis de grado bioquímico farmacéutico. Esc Sup Politecn Chimborazo, Fac Ciencias, Riobamba, Ecuador. 92 pp.

Cugnata N, Guaspari E, Pellegrini M, Fuselli S, Alonso Salces R, 2017. Optimal concentration of organic solvents to be used in the broth microdilution method to determine the antimicrobial activity of natural products against Paenibacillus larvae. J Apic Sci 61 (1): 37-53. https://doi.org/10.1515/jas-2017-0004

De Almeida Vaucher R, Giongo JL, Perger Bolzan L, Saldanha Correa M, Pedroso Fausto V, Filippi Dos Santos Alves C, et al., 2015. Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J As Pac Entomol 18: 205-210. https://doi.org/10.1016/j.aspen.2015.01.004

De Souza K, Bassani V, Schapoval E, 2007. Influence of excipients and technological process on anti-inflammatory activity of quercetin and Achyrocline satureioides (Lam.) D.C. extracts by oral route. Phytomedicine 14: 102-108. https://doi.org/10.1016/j.phymed.2005.10.007

Emerenciano VP, Militao JSL, Camposa CC, Romoffc P, Kapland MAC, Zambond M, et al., 2001. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol 29: 947-957. https://doi.org/10.1016/S0305-1978(01)00033-3

Fachinetto J, Bagatini M, Durigon J, Da Silva A, Tedesco S, 2007. Efeito anti proliferativo das infusões de Achyrocline satureioides DC (Asteraceae) sobre o ciclo celular de Allium cepa. Rev Bras Farmacogn 17 (1): 49-54. https://doi.org/10.1590/S0102-695X2007000100011

Ferraro G, Anesini C, Ouviña A, Retta D, Filip R, Gattuso M, 2008. Total phenolic content and antioxidant activity of extracts of Achyrocline satureioides flowers from different zones in Argentina. Lat Am J Pharm 27 (4): 626-628.

Finelgold S, Baron E, Braily S, 1992. Diagnóstico microbiológico, aislamiento e identificación de microorganismos patógenos. Ed Médica Panamericana Bs As 36: 514-533.

Flesar J, Havlik J, Kloucek P, Rada V, Titera D, Vendar M, et al., 2010. In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet Microbiol 145: 129-133. https://doi.org/10.1016/j.vetmic.2010.03.018

Fuselli S, García De La Rosa S, Eguaras M, Fritz R, 2008. Chemical composition and antimicrobial activity of Citrus essences on honeybee bacterial pathogen Paenibacillus larvae, the causal agent of American foulbrood. World J Microbiol Biotechnol 24: 2067-2072. https://doi.org/10.1007/s11274-008-9711-9

Gende L, Maggi M, Fritz R, Eguaras M, Bailac P, Ponzi M, 2009. Antimicrobial activity of Pimpinella anisum and Foeniculum vulgare essential oils against Paenibacillus larvae. J Essent Oil Res 21: 91-93. https://doi.org/10.1080/10412905.2009.9700120

Gende L, Mendiara S, Fernández N, Van Baren C, Di Leo Lira A, Bandoni A, et al., 2014. Essentials oils of some Mentha spp. and their relation with antimicrobial activity against Paenibacillus larvae, the causative agent of American foulbrood in honey bees, by using the bioautography technique. Bull Insectol 67 (1): 13-20.

Genersch E, 2010. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103: 10-19. https://doi.org/10.1016/j.jip.2009.06.015

Gillij YG, Gleiser RM, Zygadlo, JA, 2008. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 99: 2507-2515. https://doi.org/10.1016/j.biortech.2007.04.066

González M, Marioli J, 2010. Antibacterial activity of water extracts and essential oils of various aromatic plants against Paenibacillus larvae, the causative agent of American Foulbrood. J Invertebr Pathol 104: 209-213. https://doi.org/10.1016/j.jip.2010.04.005

González MJ, Beoletto VG, Agnese AM, Audisio MC, Marioli M, 2015. Purification of substances from Achyrocline satureioides with inhibitory activity against Paenibacillus larvae, the causal agent of American Foulbrood in honeybees larvae. Appl Biochem Biotechnol 175: 3349-3359. https://doi.org/10.1007/s12010-015-1506-5

Gratti A, Feijóo M, Barrientos E, Peneff R, Laztra E, 2014. Caracteres anatómicos, morfofuncionales y químicos foliares de Senecio subpanduratus (Asteraceae). Dominguezia 30 (1): 41-46. http://www.dominguezia.org/volumen/articulos/3015.pdf

Heiden G, Barbieri RL, Wasun RA, Scur L, Sartori M, 2007. A familia Asteraceae em Sao Mateus do Sul, Parana. Rev Bras Biocienc 5: 249-251.

Joray M, Rollán M, Ruiz G, Palacios S, Carpinella M, 2010. Antibacterial activity of extracts from plants of central Argentina-isolation of an active principle from Achyrocline satureioides. J Med Plant Nat Prod Res 77 (1): 95-100. https://doi.org/10.1055/s-0030-1250133

Katinas L, Gutiérrez DG, Grossi MA, Crisci JV, 2007. Panorama de la familia Asteaceae (= Compositae) en la República Argentina. Bol Soc Arg Bot 42 (1-2): 113-129.

Lodesani M, Costa M, 2005. Limits of chemotherapy in beekeeping development of resistance and the problem of residues. Bee World 86 (4): 102-109. https://doi.org/10.1080/0005772X.2005.11417324

Lopes L, Santos C, De Almeida Vaucher R, Gende L, Raffin R, 2016. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microb Pathog 97: 183-188. https://doi.org/10.1016/j.micpath.2016.05.014

Maggi M, Ruffinengo S, Gende L, Sarlo G, Bailac P, Ponzi M, et al., 2010. Laboratory evaluations of Syzygium aromaticum (L.) Merr: et Perry essential oil against Varroa destructor. J Essent Oil Res 22: 119-122. https://doi.org/10.1080/10412905.2010.9700278

Mann CM, Markham JL, 1998. A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84: 538-544. https://doi.org/10.1046/j.1365-2672.1998.00379.x

Piana M, Brum T, Boligon A, Alves C, Freitas R, Nunes L, et al., 2015. In vitro growth-inhibitory effect of Brazilian plants extracts against Paenibacillus larvae and toxicity in bees. An Acad Bras Cienc 87 (2): 1041-1047. https://doi.org/10.1590/0001-3765201520140282

Sabaté D, González M, Porrini M, Eguaras M, Audisio M, Marioli J, 2012. Synergistic effect of surfactin from Bacillus subtilis C4 and Achyrocline satureioides extracts on the viability of Paenibacillus larvae. World J Microbiol Biotechnol 28: 1415-1422. https://doi.org/10.1007/s11274-011-0941-x

Sanabria A, 1983. Preliminary phytochemical analysis. Methodology and its application in the evaluation of 40 plants of the Compositae family. Thesis, Nat Univ of Colombia, Fac Pharmaceut Chem, Santa Fe de Bogotá.

Santin J, Lemos M, Klein L, Niero R, De Andrade S, 2010. Antiulcer effects of Achyrocline satureoides (Lam.) DC (Asteraceae) (Marcela), a folk medicine plant, in different experimental models. J Ethnopharmacol 130: 334-339. https://doi.org/10.1016/j.jep.2010.05.014

Santos R, Filippi Dos Santos Alves C, Schneider T, Quintana Soares Lopes L, Aurich C, Giongo JL, et al., 2012. Antimicrobial activity of Amazonian oils against Paenibacillus species. J Invertebr Pathol 109: 265-268. https://doi.org/10.1016/j.jip.2011.12.002

Schmehl D, Tomé H, Mortensen A, Ferreira G, Ellis J, 2016. Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J Apic Res 55 (2): 113-129. https://doi.org/10.1080/00218839.2016.1203530

Watson K, Stallins JA, 2016. Honey bees and colony collapse disorder: a pluralistic reframing. Geogr Comp 10: 222-236. https://doi.org/10.1111/gec3.12266

Zhu W, Schmehl D, Mullin C, Frazier J, 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PloS one 9 (1): e77547. https://doi.org/10.1371/journal.pone.0077547

How to Cite
Pimentel-BetancurtD. C., TonelloN. V., Padilla-AlvarezF., Paletti-RoveyM. F., OlivaM. M., & MarioliJ. M. (2021). Oral and contact toxicity of the extract obtained with hexane from Achyrocline satureioides on larvae and adult honey bees. Spanish Journal of Agricultural Research, 19(3), e0504. https://doi.org/10.5424/sjar/2021193-16302
Animal health and welfare