Modelling the impacts of climate change on potential cultivation area and water deficit in five Mediterranean crops

  • Anton Montsant Espigall, Alzina 23, 08480 L’Ametlla del Vallès, Barcelona
  • Oriol Baena Espigall, Alzina 23, 08480 L’Ametlla del Vallès, Barcelona
  • Lluís Bernárdez Gauss School of Mathematics, Antic Camí de Caldes 1B, 08480 L’Ametlla del Vallès, Barcelona
  • Jordi Puig Espigall, Alzina 23, 08480 L’Ametlla del Vallès, Barcelona
Keywords: irrigation, Papadakis, agroclimate, rainfed agriculture, potential distribution


Aim of study: To assess the impacts of climate change on local agriculture with a high resolution in a Mediterranean region with a diversity of climates.

Area of study: Catalonia (NE Spain).

Material and methods: Based on historical meteorological records and a regionalization of the RCP4.5 model created by the Catalan Meteorological Service, the Papadakis agro-climate classification was calculated for two climate scenarios. The changes in agro-climatic suitability and irrigation needs of five typical Mediterranean crops (alfalfa, almond, barley, olive and orange) were analysed. 

Main results: In the 2031-2050 climate scenario, over 15% of the study area will no longer be adequate for non-irrigated almond or olive, at locations in which they have been traditionally rainfed crops. If irrigation is provided, orange is likely to become agro-climatically suited for the entire Catalan coastline. Were the current crop distribution maintained, irrigation needs may increase on average 16% in the study area in the future scenario.

Research highlights: High-resolution GIS data may be combined with Papadakis’ classical method to compare different climate scenarios and detect risks and opportunities for local and regional agriculture.


Download data is not yet available.


Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrig Drain paper 56.

Aurambout JP, Finlay KJ, Luck J, Beattie GAC, 2009. A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change-A means for assessing biosecurity risk. Ecol Model 220: 2512-2524.

Barrera-Escoda A, Gonçalves M, Guerreiro D, Cunillera J, Baldasano JM, 2014. Projections of temperature and precipitation extremes in the North Western Mediterranean basin by dynamical downscaling of climate scenarios at high resolution (1971-2050). Climatic Change 122: 567-582.

Benavides R, Montes F, Rubio A, Osoro K, 2007. Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agr Forest Meteorol 146: 173-188.

Benlloch-González M, Sanchez-Lucas R, Benlloch M, Fernández-Escobar R, 2018. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Sci Hortic 240: 405-410.

Bostan PA, Heuvelink GBM, Akyurek SZ, 2012. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int J Appl Earth Observ Geoinform 19: 115-126.

Brouwer C, Heibloem M, 1986. Irrigation water management: Irrigation water needs. Training Manual, FAO, Rome.

Calbó J, Gonçalves M, Barrera A, García-Serrano J, Doblas-Reyes F, Guemas V, Cunillera J, Altava V, 2016. Projeccions climàtiques i escenaris de futur. In: Tercer Informe Del Canvi Climàtic a Catalunya. Institut d'Estudis Catalans & Generalitat de Catalunya, Barcelona, pp: 113-133.

Cammarano D, Ceccarelli S, Grando S, Romagosa I, Benbelkacem A, Akar T, Ronga D, 2019. The impact of climate change on barley yield in the Mediterranean basin. Eur J Agron 106: 1-11.

Castel J, 2001. Consumo de agua por plantaciones de cítricos en Valencia. Nutrifitos 77: 27-32.

De Leon Llamazares A, 1989. Caracterización agroclimática de las provincias de Tarragona, Barcelona, Lleida y Girona. Madrid: Ministerio de Agricultura Pesca y Alimentación. [11.25.19].

Donatelli M, Srivastava AK, Duveiller G, Niemeyer S, Fumagalli D, 2015. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe. Environ Res Letters 10: 075005.

FAO, 2002. Crop water requirements and irrigation scheduling. In: FAO Irrigation Manual Module 4; Savva AP & and Frenken K (eds.), Rome.

Ferrise R, Moriondo M, Trombi G, Miglietta F, Bindi M, 2013. Climate change impacts on typical mediterranean crops and evaluation of adaptation strategies to cope with. In: Regional assessment of climate change in the Mediterranean; Navarra A & Tubiana L (eds). Adv Global Change Res 51. Springer, Dordrecht, pp: 49-70.

Folberth C, Skalský R, Moltchanova E, et al. (2016). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat Commun 7: 11872.

Fraga H, Pinto JG, Viola F, Santos JA, 2019. Climate change projections for olive yields in the Mediterranean Basin. Int J Climatol 40: 769-781.

Garrido A, Rey D, Ruiz-Ramos M, Mínguez MI, 2011. Climate change and crop adaptation in Spain: consistency of regional climate models. Climate Res 49: 211-227.

Gonçalves M, Barrera-Escoda A, Guerreiro D, Baldasano JM, Cunillera J, 2014. Seasonal to yearly assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971-2050). Climatic Change 122: 243-256.

Hengl T, Heuvelink GBM, Rossiter DG, 2007. About regression-kriging: From equations to case studies. Comput Geosci 33: 1301-1315.

ICGC 2019. Descripció del mapa de sòls 1:25.000. [11.25.19].

Kahil MT, Connor JD, Albiac J, 2015. Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecol Econ 120: 226-233.

Kourgialas NN, Koubouris GC, Dokou Z, 2019. Optimal irrigation planning for addressing current or future water scarcity in Mediterranean tree crops. Sci Total Environ 654: 616-632.

Ninyerola M, Pons X, Roure JM, 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Clim 20: 1823-1841.<1823::AID-JOC566>3.0.CO;2-B

Papadakis J, 1966. Climates of the world and their agricultural potentialities. Buenos Aires.

Parker L, Bourgoin C, Martinez-Valle A, Läderach P, 2019. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PLoS One14 (3): e0213641.

Pascual D, Zabalza Martinez J, Funes I, Vicente-Serrano S, Pla E, Aranda X, Save R, Biel C, 2016. Impacts of climate and global change on the environmental hydrological and agriculture systems in the LIFE MEDACC case study basins. Deliverable 14. LIFE MEDACC.

Pastor M, Orgaz F, 1994. Riego deficitario del olivar. Agricultura 746: 768-776.

Peñuelas J, Boada M, 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biol 9: 131-140.

Ponti L, Gutierrez AP, Ruti PM, Dell'Aquila A, 2014. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Nat Acad Sci 111: 5598-5603.

Quiroga S, Iglesias A, 2009. A comparison of the climate risks of cereal citrus grapevine and olive production in Spain. Agr Syst 101: 91-100.

Ronchail J, Cohen M, Alonso-Roldan M, Garcin H, Sultan B, Angles S, 2014. Adaptability of Mediterranean agricultural systems to climate change: the example of the Sierra Magina olive-growing region (Andalusia, Spain). Part II: the future. Weather Clim Soc 6 (4): 451-467.

Saadi S, Todorovic M, Tanasijevic L, Pereira LS, Pizzigalli C, Lionello P, 2015. Climate change and Mediterranean agriculture: impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agr Water Manage 147: 103-115.

Sebastià MT, Plaixats-Boixadera J, Lloveras J, Girona J, Caiola Nuno Savé R, 2016. Sistemes agroalimentaris: agricultura ramaderia i pesca. In: Tercer Informe Del Canvi Climàtic a Catalunya. Institut d'Estudis Catalans & Generalitat de Catalunya, Barcelona, pp: 315-336.

Spanish Ministry of Agriculture, 2012. Sistema de información geográfica de datos agrarios. [11.25.19].

Tanasijevic L, Todorovic M, Pereira L.S, Pizzigalli C, Lionello P, 2014. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agr Water Manage 144: 54-68.

Thivierge MN, Jégo G, Bélanger G, Bertrand A, Tremblay GF, Rotz CA, Qian B, 2016. Predicted yield and nutritive value of an alfalfa-timothy mixture under climate change and elevated atmospheric carbon dioxide. Agron J 108: 585-603.

Trnka M, Hlavinka P, Semenov MA, 2015. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J R Soc Interface 12: 20150721.

Ullah A, Ashfaq A, Tasneem K, Javaid A, 2017. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. J Integr Agr 16: 762-773.

Vargas F, Romero M, Clavé J, Vergés J, Santos J, Batlle I, 2008. "Vayro",'Marinada','Constantí', and "Tarraco" Almonds. Hortic Sci 43: 535-537.

Verheye W, 2008. Agro-climate based land evaluation systems. In: Land use land cover and soil sciences; Verheye W (Ed.). UNESCO-EOLSS Publ, Oxford, UK.

Watson J, Challinor AJ, 2013. The relative importance of rainfall, temperature and yield data for a reginal-scale crop model. Agr Forest Meteorol 170: 47-57.

Zaveri EB, Lobell D, 2019. The role of irrigation in changing wheat yields and heat sensitivity in India. Nature Commun 10: 4144.

How to Cite
MontsantA., BaenaO., BernárdezL., & PuigJ. (2021). Modelling the impacts of climate change on potential cultivation area and water deficit in five Mediterranean crops. Spanish Journal of Agricultural Research, 19(2), e0301.
Agricultural environment and ecology