Gaseous nitrogen losses from pig slurry fertilisation: can they be reduced with additives in a wheat crop?

  • Noemí Mateo-Marín Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Suelos y Riegos (asociada a EEAD-CSIC). Avda. Montañana 930, 50059 Zaragoza http://orcid.org/0000-0002-1003-8294
  • Ramón Isla Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Suelos y Riegos (asociada a EEAD-CSIC). Avda. Montañana 930, 50059 Zaragoza http://orcid.org/0000-0001-8913-853X
  • Dolores Quílez Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Suelos y Riegos (asociada a EEAD-CSIC). Avda. Montañana 930, 50059 Zaragoza http://orcid.org/0000-0002-2638-9443
Keywords: ammonia volatilisation, microbial activator, nitrification inhibitor, nitrous oxide emission, urease inhibitor

Abstract

Aim of the study: The use of pig slurry as fertiliser is associated with gaseous nitrogen (N) losses, especially ammonia (NH3) and nitrous oxide (N2O), leading to environmental problems and a reduction of its fertiliser value. This study evaluates, in an irrigated wheat crop, the effect of different additives mixed with pig slurry to decrease NH3 and N2O losses.

Area of study: Middle Ebro valley, Spain

Materials and methods: The treatments were: i) non-N-fertilised control, ii) pig slurry (PS), iii) pig slurry with the urease inhibitor monocarbamide dihydrogen sulphate (PS-UI), iv) pig slurry with a microbial activator in development (PS-A), and v) pig slurry with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (PS-NI). Pig slurry was applied at a target rate of 120 kg NH4+-N ha-1. Ammonia volatilisation was measured using semi-opened static chambers after treatments application at presowing 2016 and side-dressing 2017. Nitrous oxide emissions were measured using static closed chambers after treatments application at the 2017 and 2018 side-dressing.

Main results: Ammonia volatilisation was estimated to be 7-9% and 19-23% of NH4+-N applied after presowing and side-dressing applications, respectively. Additives were not able to reduce NH3 emissions in any application moment. PS-NI was the only treatment being effective in reducing N2O emissions, 70% respect to those in PS treatment. Crop yield parameters were not affected by the application of the additives because of the no effect of additives controlling NH3 losses and the low contribution of N2O losses to the N balance (<1 kg N2O-N ha-1).

Research highlights: The use of 3,4-dimethylpyrazole phosphate would be recommended from an environmental perspective, although without grain yield benefits.

Downloads

Download data is not yet available.

Author Biography

Noemí Mateo-Marín, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Suelos y Riegos (asociada a EEAD-CSIC). Avda. Montañana 930, 50059 Zaragoza

Unidad de Suelos y Riegos (asociada a EEAD-CSIC)

PhD Student

References

Abalos D, Jeffery S, Sanz-Cobena A, Guardia G, Vallejo A, 2014. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric Ecosyst Environ 189: 136-144. https://doi.org/10.1016/j.agee.2014.03.036

Aguilera E, Lassaletta L, Sanz-Cobena A, Garnier J, Vallejo A, 2013. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric Ecosyst Environ 164: 32-52. https://doi.org/10.1016/j.agee.2012.09.006

Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig Drain Paper 56, Rome (Italy).

Alves BJR, Smith KA, Flores RA, Cardoso AS, Oliveira WRD, Jantalia CP, Urquiaga S, Boddey RM, 2012. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem 46: 129-135. https://doi.org/10.1016/j.soilbio.2011.11.022

Araújo ESE da S, Marsola T, Miyazawa M, Soares LH de B, Urquiaga S, Boddey RM, Alves, BJR, 2009. Calibração de câmara semiaberta estática para quantificação de amônia volatilizada do solo. Pesqu Agropec Bras 44: 769-776. https://doi.org/10.1590/S0100-204X2009000700018

Bosch-Serra AD, Yagüe MR, Teira-Esmatges MR, 2014. Ammonia emissions from different fertilizing strategies in Mediterranean rainfed winter cereals. Atmos Environ 84: 204-212. https://doi.org/10.1016/j.atmosenv.2013.11.044

Chiodini E, Perego A, Carozzi M, Acutis M, 2019. The nitrification inhibitor Vizura® reduces N2O emissions when added to digestate before injection under irrigated maize in the Po Valley (Northern Italy). Agronomy 9: 431. https://doi.org/10.3390/agronomy9080431

Dai X, Karring H, 2014. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLOS ONE 9: e110402. https://doi.org/10.1371/journal.pone.0110402

EEA, 2016. European Union emission inventory report 1990-2013 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). European Environment Agency. https://doi.org/10.2800/18374

EEA, 2019a. Air quality in Europe - 2019 report. European Environment Agency. https://doi.org/10.2800/822355

EEA, 2019b. European Union emission inventory report 1990-2017 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). European Environment Agency. https://doi.org/10.2800/78220

EEA, 2019c. EMEP/EEA air pollutant emission inventory guidebook 2019. European Environment Agency. https://doi.org/10.2800/293657

EC, 2016. Council Directive 2016/2284/EC on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. 14 December 2016 [LEX-FAOC161484].

Fangueiro D, Hjorth M, Gioelli F, 2015. Acidification of animal slurry- A review. J Environ Manage 149: 46-56. https://doi.org/10.1016/j.jenvman.2014.10.001

FAO, 2020. FAOSTAT database collections. FAO, Rome (Italy). http://www.fao.org/faostat/en/#data (accessed 3.6.20).

Guardia G, Cangani MT, Sanz-Cobena A, Junior JL, Vallejo A, 2017. Management of pig manure to mitigate NO and yield-scaled N2O emissions in an irrigated Mediterranean crop. Agric Ecosyst Environ 238: 55-66. https://doi.org/10.1016/j.agee.2016.09.022

Guevara M, Tena C, Porquet M, Jorba O, Pérez García-Pando C, 2019. HERMESv3, a stand-alone multiscale atmospheric emission modelling framework - Part 2: bottom-up module. Geosci Model Dev Discuss 1-51. https://doi.org/10.5194/gmd-2019-295

Hafner SD, Pacholski A, Bittman S, Burchill W, Bussink W, Chantigny M, et al., 2018. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric For Meteorol 258: 66-79. https://doi.org/10.1016/j.agrformet.2017.11.027

Hristov AN, 2011. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J Dairy Sci 94: 3130-3136. https://doi.org/10.3168/jds.2010-3681

IPCC, 2019. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 4, Chapt 11. Intergovernmental Panel on Climate Change, Geneva, Switzerland. 48 pp.

Li M, Wang Y, Adeli A, Yan H, 2018. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. F Crop Res 218: 115-125. https://doi.org/10.1016/j.fcr.2018.01.011

MacKenzie AF, Fan MX, Cadrin F, 1998. Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual 27: 698-703. https://doi.org/10.2134/jeq1998.00472425002700030029x

MAPA, 2020. Encuestas ganaderas. Análisis del número de animales por tipos: Resultados de porcino. Ministerio de Agricultura Pesca y Alimentación, Spain. https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-ganaderas/ [3.Jun.20].

Mateo-Marín N, Quílez D, Guillén M, Isla R, 2020. Feasibility of stabilised nitrogen fertilisers decreasing greenhouse gas emissions under optimal management in sprinkler irrigated conditions. Agric Ecosyst Environ 290: 106725. https://doi.org/10.1016/j.agee.2019.106725

Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, et al., 2013. Anthropogenic and natural radiative forcing. In: Climate Change 2013 - The Physical Science Basis; Intergovernmental Panel on Climate Change (Ed.). Cambridge Univ Press, UK, pp: 659-740.

Neftel A, Blatter A, Schmid M, Lehmann B, Tarakanov SV, 2000. An experimental determination of the scale length of N2O in the soil of a grassland. J Geophys Res Atmos 105: 12095-12103. https://doi.org/10.1029/2000JD900088

Recio J, Vallejo A, Le-Noë J, Garnier J, García-Marco S, Álvarez JM, Sanz-Cobena A, 2018. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci Total Environ 636: 427-436. https://doi.org/10.1016/j.scitotenv.2018.04.294

Sanz-Cobena A, Lassaletta L, Aguilera E, del Prado A, Garnier J, Billen G, et al., 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric Ecosyst Environ 238: 5-24. https://doi.org/10.1016/j.agee.2016.12.032

Sigurdarson JJ, Svane S, Karring H, 2018. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Bio/Technology 17: 241-258. https://doi.org/10.1007/s11157-018-9466-1

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA Natural Resources Conservation Service, Washington DC, USA.

Ti C, Xia L, Chang SX, Yan X, 2019. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ Pollut 245: 141-148. https://doi.org/10.1016/j.envpol.2018.10.124

UNEP, 2013. Drawing down N2O to protect climate and the ozone layer. A UNEP Synthesis Report. United Nations Environment Programme, Nairobi, Kenya.

Ussiri D, Lal R, 2013. Soil emission of nitrous oxide and its mitigation. Springer Netherlands, Dordrecht. DOI:10.1007/978-94-007-5364-8 https://doi.org/10.1007/978-94-007-5364-8

Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD, 1997. Human alteration of the global nitrogen cycle: causes and consequences issues in ecology. Issues Ecol 1: 1-17.

Yagüe MR, Quílez D, 2012. On-farm measurement of electrical conductivity for the estimation of ammonium nitrogen concentration in pig slurry. J Environ Qual 41: 893-900. https://doi.org/10.2134/jeq2011.0352

Yagüe MR, Valdez AS, Bosch-Serra ÀD, Ortiz C, Castellví F, 2019. A short-term study to compare field strategies for ammonia emission mitigation. J Environ Qual 48: 179-184. https://doi.org/10.2134/jeq2018.05.0218

Yoh M, Toda H, Kanda K, Tsuruta H, 1997. Diffusion analysis of N2O cycling in a fertilized soil. Nutr Cycl Agroecosyst 49: 29-33. https://doi.org/10.1023/A:1009757829417

Zerulla W, Barth T, Dressel J, Erhardt K, Horchler von Locquenghien K, Pasda G, et al., 2001a. 3,4-Dimethylpyrazole phosphate (DMPP) - A new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils 34: 79-84. https://doi.org/10.1007/s003740100380

Zerulla W, Pasda G, Hähndel R, Wissemeier AH, 2001b. The new nitrification inhibitor DMPP (ENTEC®) for use in agricultural and horticultural crops - An overview. In: Plant Nutrition. Springer Netherlands, Dordrecht, pp: 754-755. https://doi.org/10.1007/0-306-47624-X_366

Published
2021-08-12
How to Cite
Mateo-MarínN., IslaR., & QuílezD. (2021). Gaseous nitrogen losses from pig slurry fertilisation: can they be reduced with additives in a wheat crop?. Spanish Journal of Agricultural Research, 19(3), e0302. https://doi.org/10.5424/sjar/2021193-17271
Section
Agricultural environment and ecology