Influence of overliming vineyard acid soils on the macro-nutritional status of grapevines

  • Miguel A. Olego Instituto de Investigación de la Viña y el Vino (IIVV). Universidad de León, León
  • Miguel J. Quiroga Instituto de Investigación de la Viña y el Vino (IIVV). Universidad de León, León
  • Mateo Cuesta Instituto de Investigación de la Viña y el Vino (IIVV). Universidad de León, León
  • Paula A. Oliveira Centre for the Research and Technology of Agro-Environmental and Biological Sciences. Universidade de Trás-os-Montes e Alto Douro. Vila Real
  • José E. Garzón-Jimeno Instituto de Investigación de la Viña y el Vino (IIVV). Universidad de León, León
Keywords: nutrient interaction, phosphorus, potassium, grape seeds, grape skins


Aim of study: The main aim of this study was to evaluate the effect of overliming with dolomitic lime on the topsoil and grapevine macro-nutritional levels (both petiole and grape tissues), as well as on berry weight and must quality properties in grapevines growing on an acid soil.

Area of study: The study was carried out in the viticultural region of El Bierzo (Spain), one of the main wine protected designation of origin in the northwest of Spain.

Material and methods: The effects of overliming were studied in soil parameters, petiole and grape tissues, as well as in must quality during three years (2014-2016). Data analysis was performed using factorial ANOVA (both parametric and non-parametric tests have been used).

Main results: The results found on the soil levels of magnesium and phosphorus were mirrored by those shown in petiole and grape tissues. Data suggest that insufficient Mg supply in vineyard acid soils could lead to a lower P vascular movement in vines. Additionally, our findings suggest that a great decrease of K levels in vine tissues as a consequence of overliming, could lead to changes in harvest quality.

Research highlights: Overliming with dolomitic limestone in large quantities decreased soil exchangeable K, as well as improved supply of exchangeable Mg and available P. Additionally Mg and P levels in both petiole and grape tissues were significantly affected by overliming.


Download data is not yet available.

Author Biography

Miguel A. Olego, Instituto de Investigación de la Viña y el Vino (IIVV). Universidad de León, León


Bavaresco L, Gatti M, Fregoni M, 2010. Nutritional deficiencies. In: Methodologies and results in grapevine research; Delrot S, Medrano H, Or E, Bavaresco L and Grando S (eds.). pp: 165-191. Springer: Dordrecht, The Netherlands.

Benton J (ed), 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Raton, FL, USA. 384 pp.

Bouyoucos G, 1962. Hydrometer method improved for making particle size analyses of soils. Agron J 544: 464-465.

Busenberg E, Plummer LN, 1989. Thermodynamics of magnesian calcite solid-solutions at 25ºC and 1 atm total pressure. Geochim Cosmochim Acta 53: 1189-1208.

Calleja A, 1978. La mineralización de muestras vegetales para el análisis de minerales por espectrofotometría y colorimetría. An Fac Vet León 24: 175-177.

Cass A, 2005. Effects of soil physical characteristics on mineral nutrient availability, movement, and uptake; Christensen P & Smart DR (eds.). Proc Soil Environment and Vine Mineral Nutrition Symp 2004. ASEV 2005, pp: 3-11.

Cochrane TT, Salinas JG, Sánchez PA, 1980. An equation for liming acid mineral soils to compensate crop aluminium tolerance. Trop Agr 57: 133-140.

Fageria NK, Baligar VC, 2008. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99: 345-399.

Field A, Miles J, Field Z, 2012. Discovering statistics using R, 1st ed. SAGE Publ Ltd, NY, USA. 957 pp.

Fráguas JC, 1999. Tolerância de porta-enxertos de videira ao aluminio do solo. Pesqu Agropec Bras 34: 1193-1200.

García-Escudero E, Romero I, Benito A, Domínguez N, Martín I, 2013. Reference levels for leaf nutrient diagnosis of cv. Tempranillo grapevine in the Rioja appellation. Commun Soil Sci Plant Anal 44 (1-4): 645-654.

Goulding KWT, 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage 32 (3): 390-399.

Holland JE, Bennett AE, Newton AC, White PJ, McKenzie BM, George TS, et al., 2018. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci Total Environ 610-611: 316-332.

Holland JE, White PJ, Glendining MJ, Goulding KWT, McGrath SP, 2019. Yield responses of arable crops to liming-An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur J Agron 105: 176-188.

Jackson R, 2020. Wine science. Principles and applications, 5th ed. Acad Press, London. 1030 pp.

Jakobsen ST, 1979. Interaction between phosphate and calcium in nutrient uptake by plant roots. Commun Soil Sci Plant Anal 10: 141-152.

Kochian LV, Hoekenga OA, Piñeros MA, 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55: 459-493.

Leibar U, Pascual I, Aizpurua A, Morales F, Unamunzaga O, 2017. Grapevine nutritional status and K concentration of must under future expected climatic conditions texturally different soils. J Soil Sci Plant Nutr 17 (2): 385-397.

Little I, 1964. The determination of exchangeable aluminium in soils. Aust J Soil Res 2: 76-82.

Magdoff FR, Bartlett RJ, 1980. Effect of liming acid soils on potassium availability. Soil Sci 129 (1): 12-14.

Mair P, Wilcox R, 2020. Robust statistical methods in R using the WRS2 package. Behav Res Meth 52: 464-488.

MAPA, 1993. Métodos oficiales de análisis. Tomo III. Secretaría General Técnica, Ministerio de Agricultura, Pesca y Alimentación, Madrid. 662 pp.

Mpelasoka BS, Schachtman DP, Treeby MT, Thomas MR, 2003. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res 9: 154-168.

OIV, 2018. Compendium of international methods of wine and must analysis, Vol 1. Int Org of Wine and Vine, Paris. 770 pp.

Olego MA, Garzón JE, 2014. Predictive modelling of magnesium concentration in grapevine petioles as a basis for liming recommendations in vineyard acid soils. Vitis 53 (1): 29-32.

Olego MA, Visconti F, Quiroga MJ, de Paz JM, Garzón-Jimeno E, 2016. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard. Span J Agric Res 14 (2): e1102.

Peuke AD, 2009. Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. J Plant Nutr Soil Sci 172: 557-564.

Piccin R, Couto RDR, Sartori RJS, Gatiboni LC, Conti LD, Rodrigues LAT, et al., 2017. Phosphorus forms in leaves and their relationships with must composition and yield in grapevines. Pesqu Agrop Bras 52 (5): 319-327.

Porta J, López-Acevedo M, Poch RM, 2019. Edafología: uso y protección de suelos, 4th ed. Ed Mundi-Prensa, Madrid. 624 pp.

Quiroga MJ, Olego MA, Sánchez-García M, Medina JE, Visconti F, Coque JJR, Garzón Jimeno JE, 2017. Effects of liming on soil properties, leaf tissue cation composition and grape yield in a moderately acid vineyard soil. Influence on must and wine quality. OENO One 51 (4): 342-362.

R Core Team, 2019. R: A language and environment for statistical computing. R Found for Statist Comput. [accessed 06/2020].

Rogiers SY, Greer DH, Hatfield JM, Orchard BA, Keller M, 2006. Solute transport into Shiraz berries during development and late-ripening shrinkage. Am J Enol Viticult 57 (1): 73-80.

Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD, 2017. Potassium in the grape (Vitis vinifera L.) berry: transport and function. Front Plant Sci 8: 1629.

Sanchez PA, 2019. Properties and management of soils in the tropics. Cambridge Univ Press, Cambridge, UK. 666 pp.

Shabala S, 2003. Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92: 627-634.

SIAR, 2020. Sistema de información agroclimática para el regadío. Ministerio de Agricultura, Pesca y Alimentación: Madrid. /websiar/SeleccionParametrosMap.aspx?dst=1 [accessed 06/ 2020].

Sinilal B, Ovadia R, Nissim-Levi A, Perl A, Carmeli-Weissberg M, Oren-Shamir M, 2011. Increased accumulation and decreased catabolism of anthocyanins in red grape cell suspension culture following magnesium treatment. Planta 234 (1): 61-71.

Skinner PW, Matthews, MA, 1990. A novel interaction of magnesium translocation with the supply of phosphorus to roots of grapevine (Vitis vinifera L.). Plant Cell Environ 13 (8): 821-826.

Storey R, Jones G, Schachtman P, Treeby M, 2003. Calcium-accumulating cells in the meristematic region of grapevine root apices. Funct Plant Biol 30: 719-727.

USDA, 2017. Soil survey manual. Agriculture Handbook No. 18. United States Dept. of Agriculture, Washington, DC. 603 pp.

van Leeuwen C, Roby JP, de Rességuier L, 2018. Soil-related terroir factors: a review. OENO One 52 (2): 173-188.

Xiao Z, 2019. How can we influence potassium (K) levels in the vineyard? Nat Wine and Grape Indust Centr, New South Wales, Australia. 32 pp.

Xiao Z, DeGaris KA, Baby T, McLoughlin SJ, Holzapfel BP, Walker RR, Schmidtke LM, Rogiers SY, 2020. Using rootstocks to lower berry potassium concentrations in 'Cabernet Sauvignon' grapevines. Vitis 59 (3): 117-126.

Zlámalová T, Elbl J, Baroň M, Bělíková H, Lampíř L, Hlušek J, Lošák T, 2015. Using foliar applications of magnesium and potassium to improve yields and some qualitative parameters of vine grapes (Vitis vinifera L.). Plant Soil Environ 65 (10): 451-457.

How to Cite
OlegoM. A., QuirogaM. J., CuestaM., OliveiraP. A., & Garzón-JimenoJ. E. (2021). Influence of overliming vineyard acid soils on the macro-nutritional status of grapevines. Spanish Journal of Agricultural Research, 19(3), e0903.
Plant production (Field and horticultural crops)