Uncertainty analysis of the HORTSYST model applied to fertigated tomatoes cultivated in a hydroponic greenhouse system

  • Antonio Martínez-Ruiz National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Campo Experimental San Martinito, Puebla, 74100
  • Irineo L. López-Cruz Agricultural Engineering Graduate Program, University of Chapingo, 56230
  • Agustín Ruiz-García University of Chapingo, Irrigation Dept., 56230
  • Joel Pineda-Pineda University of Chapingo, Soils Dept., Chapingo, 56230
  • Prometeo Sánchez-García Postgraduate College, Edaphology Dept., Campus Montecillo, 56230
  • Candido Mendoza-Pérez Postgraduate College, Edaphology Dept., Campus Montecillo, 56230
Keywords: model simulation, transpiration, potential growth, Bayesian approach, crop modelling


Aim of study: The objective was to perform an uncertainty analysis (UA) of the dynamic HORTSYST model applied to greenhouse grown hydroponic tomato crop. A frequentist method based on Monte Carlo simulation and the Generalized Likelihood Uncertainty Estimation (GLUE) procedure were used.

Area of study: Two tomato cultivation experiments were carried out, during autumn-winter and spring-summer crop seasons, in a research greenhouse located at University of Chapingo, Chapingo, Mexico.

Material and methods: The uncertainties of the HORTSYST model predictions PTI, LAI, DMP, ETc, Nup, Pup, Kup, Caup, and Mgup uptake, were calculated, by specifying the uncertainty of model parameters 10% and 20% around their nominal values. Uniform PDFs were specified for all model parameters and LHS sampling was applied. The Monte Carlo and the GLUE methods used 10,000 and 2,000 simulations, respectively. The frequentist method included the statistical measures: minimum, maximum, average values, CV, skewness, and kurtosis whilst GLUE used CI, RMSE, and scatter plots.

Main results: As parameters were changed 10%, the CV, for all outputs, were lower than 15%. The smallest values were for LAI (10.75%) and DMP (11.14%) and the largest was for ETc (14.47%). For Caup (12.15%) and Pup (12.27%), the CV was lower than the one for Nup and Kup. Kurtosis and skewness values were close as expected for a normal distribution. According to GLUE, crop density was found to be the most relevant parameter given that it yielded the lowest RMSE value between the simulated and measured values.

Research highlights: Acceptable fitting of HORTSYST was achieved since its predictions were inside 95% CI with the GLUE procedure.


Download data is not yet available.


Bert FE, Laciana CE, Podestá GP, Satorre EH, Menéndez AN, 2007. Sensitivity of CERES-Maize simulated yields to uncertainty in soil properties and daily solar radiation. Agr Syst 94 (2): 141-150. https://doi.org/10.1016/j.agsy.2006.08.003

Beven K, Freer J, 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249 (1-4): 11-29. https://doi.org/10.1016/S0022-1694(01)00421-8

Beven K, Binley A, 2014. GLUE: Twenty years on. Hydrol Process 28 (24): 5897-5918. https://doi.org/10.1002/hyp.10082

Challa H, Bakker MJ, 1999. Potential production within the greenhouse environment. In: Greenhouse Ecosystems, Vol. 20, Chapt. 15, pp: 333-348.

Confalonieri R, Bregaglio S, Acutis M, 2016. Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration. Ecol Model 328: 72-77. https://doi.org/10.1016/j.ecolmodel.2016.02.013

Cooman A, Schrevens E, 2006. A Monte Carlo approach for estimating the uncertainty of predictions with the tomato plant growth model, Tomgro. Biosyst Eng 94 (4): 517-524. https://doi.org/10.1016/j.biosystemseng.2006.05.005

Dai J, Luo W, Li Y, Yuan C, Chen Y, Ni J, 2006. A simple model for prediction of biomass production and yield of three greenhouse crops. III Int Symp on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation, 718: 81-88. https://doi.org/10.17660/ActaHortic.2006.718.8

De Reffye P, Heuvelink E, Guo Y, Hu BG, Zhang BG, 2009. Coupling process-based models and plant architectural models: A key issue for simulating crop production. Crop Model Decis Supp 4: 130-147. https://doi.org/10.1007/978-3-642-01132-0_15

Dzotsi KA, Basso B, Jones JW, 2013. Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT. Ecol Model 260: 62-76. https://doi.org/10.1016/j.ecolmodel.2013.03.017

Elia A, Conversa G, 2015. A decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I, Methodological approach and description of the software. Front Plant Sci 6: 319. https://doi.org/10.3389/fpls.2015.00319

Gallardo M, Giménez C, Martínez-Gaitán C, Stöckle CO, Thompson RB, Granados MR, 2011. Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration. Agr Water Manag 101 (1): 107-117. https://doi.org/10.1016/j.agwat.2011.09.008

Gallardo M, Thompson RB, Giménez C, Padilla FM, Stöckle CO, 2014. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig Sci 32 (3): 237-253. https://doi.org/10.1007/s00271-014-0427-3

Gallardo M, Fernández MD, Giménez C, Padilla FM, Thompson RB, 2016. Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses. Agric Syst 146: 30-43. https://doi.org/10.1016/j.agsy.2016.03.014

Giménez C, Gallardo M, Martínez-Gaitán C, Stöckle CO, Thompson RB, Granados MR, 2013. VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system. Irrig Sci 31 (3): 465-477. https://doi.org/10.1007/s00271-011-0312-2

Granados MR, Thompson RB, Fernández MD, Martínez-Gaitán C, Gallardo M, 2013. Prescriptive-corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agr Water Manag 119: 121-134. https://doi.org/10.1016/j.agwat.2012.12.014

Iizumi T, Yokozawa M, Nishimori M, 2009. Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agr For Meteorol 149 (2): 333-348. https://doi.org/10.1016/j.agrformet.2008.08.015

Kang MZ, Cournède PH, de Reffye P, Auclair D, Hu BG, 2008. Analytical study of a stochastic plant growth model: Application to the GreenLab model. Math Comput Simul 78 (1): 57-75. https://doi.org/10.1016/j.matcom.2007.06.003

Lemaire S, Maupas F, Cournède PH, De Reffye P, 2008. A morphogenetic crop model for sugar-beet (Beta vulgaris L.). Int Symp on Crop Modeling and Decision Support ISCMDS, 5: 19-22. https://doi.org/10.1007/978-3-642-01132-0_14

Li Y, Kinzelbach W, Zhou J, Cheng GD, Li X, 2012. Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China. Hydrol Earth Syst Sci 16 (5): 1465-1480. https://doi.org/10.5194/hess-16-1465-2012

Liang H, Qi Z, DeJonge KC, Hu K, Li B, 2017. Global sensitivity and uncertainty analysis of nitrate leaching and crop yield simulation under different water and nitrogen management practices. Comput Electron Agr 142: 201-210. https://doi.org/10.1016/j.compag.2017.09.010

López-Cruz IL, Salazar-Moreno R, Rojano-Aguilar A, Ruiz-García A, 2012. Análisis de sensibilidad global de un modelo de lechugas (Lactuca sativa L.) cultivadas en invernadero. Agrociencia 46 (4): 383-397.

López-Cruz IL, Ruiz-García A, Martínez-Ruiz A, 2018. A comparison of VegSyst and mod-VegSyst models in predicting dry matter, nitrogen uptake and transpiration of greenhouse-grown tomatoes. Acta Hortic 1227: 265-272. https://doi.org/10.17660/ActaHortic.2018.1227.32

Makowski D, Wallach D, Tremblay M, 2002. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie 22: 191-203. https://doi.org/10.1051/agro:2002007

Martinez-Ruiz A, López-Cruz IL, Ruiz-García A, Ramírez-Árias A, 2012. Calibración y validación de un modelo de transpiración para gestión de riegos de jitomate (Solanum lycopersicum L.) en invernadero. Rev Mex Cienc Agric 4: 757-766.

Martínez-Ruiz A, López-Cruz IL, Ruiz-García A, Pineda-Pineda J, Prado-Hernández JV, 2019. HortSyst: A dynamic model to predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chil J Agric Res 79 (1): 89-102. https://doi.org/10.4067/S0718-58392019000100089

Martinez-Ruiz A, Pineda-Pineda J, Ruiz-García A, Prado-Hernández JV, López-Cruz IL, Mendoza-Pérez C, 2020. The HORTSYST model extended to phosphorus uptake prediction for tomatoes in soilless culture. Acta Hortic 1271: 301-306. https://doi.org/10.17660/ActaHortic.2020.1271.41

Matott LS, Babendreier JE, Purucker ST, 2009. Evaluating uncertainty in integrated environmental models: A review of concepts and tools. Water Resour Res 45 (6):1-14. https://doi.org/10.1029/2008WR007301

Monod H, Naud C, Makowski D, 2006. Uncertainty and sensitivity analysis for crop models. In: Working with dynamic crop models, Chapt. 3, pp: 55-100. Elsevier. ISBN: 0-444-52135-6.

Oliveira SR, Neto JAG, Nóbrega JA, Jones BT, 2010. Determination of macro- and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies. Spectrochimica Acta Part B: At Spectrosc 65 (4): 316-320. https://doi.org/10.1016/j.sab.2010.02.003

Pathak TB, Jones JW, Fraisse CW, Wright D, Hoogenboom G, 2012. Uncertainty analysis and parameter estimation for the CSM-CROPGRO-cotton model. Agron J 104 (5): 1363-1373. https://doi.org/10.2134/agronj2011.0349

Pérez-Castro A, Sánchez-Molina JA, Castilla M, Sánchez-Moreno J, Moreno-Úbeda JC, Magán JJ, 2017. cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agr Water Manag 183: 186-193. https://doi.org/10.1016/j.agwat.2016.09.013

Pianosi F, Sarrazin F, Wagener T, 2015. A Matlab toolbox for global sensitivity analysis. Environ Model Softw 70: 80-85. https://doi.org/10.1016/j.envsoft.2015.04.009

Refsgaard CJ, Henriksen HJ, Harrar WG, Scholten H, Kassahun A, 2005. Quality assurance in model-based water management - Review of existing practice and outline of new approaches. Environ Model Softw 20: 1201-1215. https://doi.org/10.1016/j.envsoft.2004.07.006

Sáez-Plaza P, Navas MJ, Wybraniec S, Michałowski T, Asuero AG, 2013. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit Rev Anal Chem 43 (4): 224-272. https://doi.org/10.1080/10408347.2012.751787

Shibu ME, Leffelaar PA, van Keulen H, Aggarwal PK, 2010, LINTUL3, a simulation model for nitrogen-limited situations: Application to rice. Eur J Agron 32 (4): 255-271. https://doi.org/10.1016/j.eja.2010.01.003

Soltani A, Sinclair TR, 2012. Modeling physiology of crop development, growth and yield. Growth and yield. CABI Intnal, Wallingford, UK. 322 pp. https://doi.org/10.1079/9781845939700.0000

Stedinger JR, Vogel RM, Lee SU, Batchelder R, 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44 (12): 1-17. https://doi.org/10.1029/2008WR006822

Tei F, Benincasa P, Guiducci M, 2002. Critical nitrogen concentration in processing tomato. Eur J Agron 18: 45-55. https://doi.org/10.1016/S1161-0301(02)00096-5

Uusitalo L, Lehikoinen A, Helle I, Myrberg K, 2015. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ Model Softw 63: 24-31. https://doi.org/10.1016/j.envsoft.2014.09.017

Walker WE, Harremoes P, Rotmans J, van der Sluijs JP, van Asselt MBA, Janssen P, von Krauss MPK, 2003. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr Assess 4 (1): 5-17. https://doi.org/10.1076/iaij.

Wallach D, Makowski D, Jones JW, Brun F, 2014. Working with dynamic crop models. Methods, tools and examples for agriculture and environment. Elsevier, Amsterdam. 978 pp.

Xu R, Dai J, Luo W, Yin X, Li Y, Tai X, et al., 2010. A photothermal model of leaf area index for greenhouse crops. Agr For Meteorol 150 (4): 541-552. https://doi.org/10.1016/j.agrformet.2010.01.019

How to Cite
Martínez-RuizA., López-CruzI. L., Ruiz-GarcíaA., Pineda-PinedaJ., Sánchez-GarcíaP., & Mendoza-PérezC. (2021). Uncertainty analysis of the HORTSYST model applied to fertigated tomatoes cultivated in a hydroponic greenhouse system. Spanish Journal of Agricultural Research, 19(3), e0802. https://doi.org/10.5424/sjar/2021193-17842
Plant physiology