Effects of salt stress on plant growth, abscisic acid and salicylic acid in own-rooted cultivars of Vitis vinifera L.

  • Sergio J. Álvarez-Méndez Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife Universidad de La Laguna, Instituto Universitario de Bio-Orgánica Antonio González. Avda. Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife http://orcid.org/0000-0002-2473-9622
  • Antonio Urbano-Gálvez Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife http://orcid.org/0000-0003-3504-4508
  • Vicente Vives-Peris Universidad Jaume I, Dept. Ciencias Agrarias y del Medio Natural, Campus Riu Sec. 12071 Castellón de la Plana http://orcid.org/0000-0002-9882-7297
  • Rosa M. Pérez-Clemente Universidad Jaume I, Dept. Ciencias Agrarias y del Medio Natural, Campus Riu Sec. 12071 Castellón de la Plana http://orcid.org/0000-0001-9647-0354
  • Aurelio Gómez-Cadenas Universidad Jaume I, Dept. Ciencias Agrarias y del Medio Natural, Campus Riu Sec. 12071 Castellón de la Plana http://orcid.org/0000-0002-4598-2664
  • Jalel Mahouachi Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife http://orcid.org/0000-0002-0878-8176
Keywords: growth rate, leaf biomass, phytohormones, proline, stomatal closure


Aim of study: In most areas of vineyards worldwide, cultivars are frequently grafted on specific rootstocks to avoid Daktulosphaira vitifoliae pest attack. Nevertheless, the absence of this pest in Canary Islands allowed the chance to conserve and cultivate traditional or new own-rooted genotypes without the requirement of the rootstocks. To investigate the responses of own-rooted genotypes of Vitis vinifera L. to salt stress conditions, ‘Castellana Negra’ (‘CN’) and ‘Negramoll’ (‘Ne’) were used with the aim to characterize their morphological and physiological responses.

Area of study: Canary Islands, Spain.

Material and methods: The effects of NaCl stress on growth, abscisic acid (ABA), salicylic acid (SA) and proline were assessed in ‘CN’ and ‘Ne’ under greenhouse conditions.

Main results: In ‘CN’, the decrease of leaf number in stressed plants was lower and started eleven days later than in ‘Ne’. Salt stress also reduced stomatal conductance (gs), although such decrease took place earlier in ‘CN’ than in ‘Ne’. ABA and SA concentrations in ‘CN’ leaves were 2-fold higher than those of ‘Ne’. Salt stress increased leaf ABA and SA content in both genotypes, compared to control. In conclusion, ABA and SA appear to be involved in grapevines responses to salinity and suggest that exogenous SA could be useful to mitigate the stress impacts.

Research highlights: ‘CN’ exhibited a better response than ‘Ne’ through the delay of salt injury establishment, and the dissimilar responses between ‘CN’ and ‘Ne’ seem to be associated to the higher accumulation of ABA and SA under salt stress.


Download data is not yet available.

Author Biography

Jalel Mahouachi, Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife


Acet T, Kadıoğlu A, 2020. SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in Arabidopsis thaliana under salt stress. Physiol Mol Biol Plants 26: 1831-1845. https://doi.org/10.1007/s12298-020-00873-4

Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P, 2020. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10: 42. https://doi.org/10.3390/biom10010042

Amiri J, Eshghi S, Tafazoli E, Kholdebarin B, Abbaspour N, 2014. Ameliorative effects of salicylic acid on mineral concentrations in roots and leaves of two grapevine (Vitis vinifera L.) cultivars under salt stress. Vitis 53: 181-188.

Arbona V, Argamasilla R, Gómez-Cadenas A, 2010. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167: 1342-1350. https://doi.org/10.1016/j.jplph.2010.05.012

Argamasilla R, Gómez-Cadenas A, Arbona V, 2014. Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Grow Regul 33: 169-180. https://doi.org/10.1007/s00344-013-9359-z

Ashraf M, Foolad MR, 2007. Roles of glycine betaine and proline in improving plant biotic stress resistance. Environ Exp Bot 59: 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-220. https://doi.org/10.1007/BF00018060

Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F, 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58: 4216-4222. https://doi.org/10.1021/jf9041479

Borsani O, Valpuesta V, Botella MA, 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126: 1024-1030. https://doi.org/10.1104/pp.126.3.1024

Brunetti C, Sebastiani F, Tattini M, 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Sci 280: 448-454. https://doi.org/10.1016/j.plantsci.2018.12.010

Chen YE, Cui JM, Li GX, Yuan M, Zhang ZW, Yuan S, Zhang HY, 2016. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biol Plant 60: 139-147. https://doi.org/10.1007/s10535-015-0564-4

Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C et al., 2007. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Int Genomics 7: 111-134. https://doi.org/10.1007/s10142-006-0039-y

De Costa W, Zörb C, Hartung W, Schubert S, 2007. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131: 311-321. https://doi.org/10.1111/j.1399-3054.2007.00962.x

Dilukshi-Fernando VC, Schroeder DF, 2016. Role of ABA in Arabidopsis salt, drought, and desiccation tolerance. In: Abiotic and biotic stress in plants; Shanker A, Shanker C (eds.). pp: 507-523. IntechOpen, London. https://doi.org/10.5772/61957

Downton W, Loveys B, Grant W, 1990. Salinity effects on the stomatal behaviour of grapevine. N Phytol 116: 499-503. https://doi.org/10.1111/j.1469-8137.1990.tb00535.x

Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A, 2005. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53: 8437-8442. https://doi.org/10.1021/jf050884b

Fisarakis I, Chartzoulakis K, Stavrakas D, 2001. Response of 'Sultana' vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51: 13-27. https://doi.org/10.1016/S0378-3774(01)00115-9

Ghaffari H, Tadayon M, Nadeem M, Razmjoo J, Cheema M, 2020. Foliage applications of jasmonic acid modulate the antioxidant defence under water deficit growth in sugar beet. Span J Agric Res 17 (4): e0805. https://doi.org/10.5424/sjar/2019174-15380

Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talón M, 2002. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Grow Regul 21: 234-240. https://doi.org/10.1007/s00344-002-0013-4

Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T, 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agron Soil Sci 51: 687-695. https://doi.org/10.1080/03650340500336075

Hare PD, Cress WA, 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Grow Regul 21: 79-102. https://doi.org/10.1023/A:1005703923347

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ, 2000. Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51: 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463

Hayat S, Hayat Q, Alyemeni, MN, Wani AS, Pichtel J, Ahmad A, 2012. Role of proline under changing environments. Plant Signal Behav 7: 1456-1466. https://doi.org/10.4161/psb.21949

Hunt R, Cornelissen JHC, 1997. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol 135: 395-417. https://doi.org/10.1046/j.1469-8137.1997.00671.x

Ju Y, Yue X, Min Z, Wang X, Fang Y, Zhang J, 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 146: 98-111. https://doi.org/10.1016/j.plaphy.2019.11.002

Khan W, Prithiviraj B, Smith DL, 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160: 485-492. https://doi.org/10.1078/0176-1617-00865

Khodary SEA, 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Inter J Agric Biol 6: 5-8.

Luo X, Dai Y, Zheng C, Yang Y, Chen W, Wang Q, Umashankar C, Du J, Liu W, Shu K, 2021. The ABI4‐RbohD/VTC2 regulatory module promotes Reactive Oxygen Species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol 229: 950-962. https://doi.org/10.1111/nph.16921

Mahouachi J, 2018. Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Sci Hortic 234: 95-100. https://doi.org/10.1016/j.scienta.2018.02.028

Mahouachi J, Argamasilla R, Gómez-Cadenas A, 2012. Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. J Plant Grow Regul 31: 1-10. https://doi.org/10.1007/s00344-011-9214-z

Mahouachi J, Fernández-Galván D, Gómez-Cadenas A, 2013. Abscisic acid, indole-3-acetic acid and mineral-nutrient changes induced by drought and salinity in longan (Dimocarpus longan Lour.) plants. Acta Physiol Plant 35: 3137-3146. https://doi.org/10.1007/s11738-013-1347-1

Mahouachi J, López-Climent MF, Gómez-Cadenas A, 2014. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. Sci World J: 540962. https://doi.org/10.1155/2014/540962

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R, 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33: 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

Montero E, Cabot C, Barcelo J, Poschenrieder C, 1997. Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol Plant 101: 17-22. https://doi.org/10.1034/j.1399-3054.1997.1010103.x

Munns R, 2002. Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns R, James RA, Lauchli A, 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043. https://doi.org/10.1093/jxb/erj100

Muñoz-Espinoza V, López-Climent M, Casaretto JA, Gómez-Cadenas A, 2015. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci 6: 997. https://doi.org/10.3389/fpls.2015.00997

Prior LD, Grieve AM, Cullis BR, 1992. Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. II. Plant mineral content, growth and physiology. Aust J Agric Res 43: 1067-1083. https://doi.org/10.1071/AR9921067

Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X et al., 2020. Phytochrome-interacting factors interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Mol Plant 13: 414-430. https://doi.org/10.1016/j.molp.2020.02.001

Qin L, Kang W, Qi Y, Zhang Z, Wang N, 2016. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiol Plant 38: 68. https://doi.org/10.1007/s11738-016-2087-9

Raghavendra AS, Gonugunta VK, Christmann A, Grill E, 2011. ABA perception and signaling. Trends Plant Sci 15: 395-401. https://doi.org/10.1016/j.tplants.2010.04.006

Rodríguez-Torres I, 2017. Variedades de vid cultivadas en Canarias: descriptores morfológicos, caracterización morfológica, molecular, agronómica y enológica. Instituto Canario de Investigaciones Agrarias, Canarias, Spain.

Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T et al., 2002. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2: 282-291. https://doi.org/10.1007/s10142-002-0070-6

Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164: 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6

Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V, 2017. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163: 28-51. https://doi.org/10.1016/j.jprot.2017.05.011

Singh B, Usha K, 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Grow Regul 39: 137-141.

Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA, 2020. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66: 7-13. https://doi.org/10.17221/472/2019-PSE

Stevens RM, Harvey G, Partington DL, Coombe BG, 1999. Irrigation of grapevines with saline water at different growth stages: effects on soil, vegetative growth and yield. Aust J Agric Res 50: 343-355. https://doi.org/10.1071/A98077

Tahjib-UI-Arif M, Sohag AAM, Afrin S, Bashar KK, Afrin T, Mahamud ASU, Polash MAS, Hossain MT, Sohel MAT, Brestic M, Murata Y, 2019. Differential response of sugar beet to long-term mild to severe salinity in a soil-pot culture. Agriculture 9: 223. https://doi.org/10.3390/agriculture9100223

Tang X, Mu X, Shao H, Wang H, Brestic M, 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35: 425-437. https://doi.org/10.3109/07388551.2014.889080

Tester M, Davenport R, 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527. https://doi.org/10.1093/aob/mcg058

Walker RR, Read PE, Blackmore DH, 2008. Rootstock and salinity effects on rates of berry maturation, ion accumulation and colour development in Shiraz grapes. Aust J Grape Wine Res 6: 227-239. https://doi.org/10.1111/j.1755-0238.2000.tb00183.x

How to Cite
Álvarez-MéndezS. J., Urbano-GálvezA., Vives-PerisV., Pérez-ClementeR. M., Gómez-CadenasA., & MahouachiJ. (2021). Effects of salt stress on plant growth, abscisic acid and salicylic acid in own-rooted cultivars of Vitis vinifera L. Spanish Journal of Agricultural Research, 19(3), e0803. https://doi.org/10.5424/sjar/2021193-17946
Plant physiology