The modernization of traditional vineyards into intensive trellis systems reduces the species richness and abundance of reptiles

  • José Guerrero-Casado Departamento de Zoología, Universidad de Córdoba, Edificio Charles Darwin, Campus de Rabanales, 14071 Córdoba, Spain
  • Antonio J. Carpio Departamento de Zoología, Universidad de Córdoba, Edificio Charles Darwin, Campus de Rabanales, 14071 Córdoba, Spain / Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain
  • Marta Canós-Burguete Departamento de Zoología, Universidad de Córdoba, Edificio Charles Darwin, Campus de Rabanales, 14071 Córdoba, Spain
  • Mizar Torrijo-Salesa Departamento de Zoología, Universidad de Córdoba, Edificio Charles Darwin, Campus de Rabanales, 14071 Córdoba, Spain
  • Francisco S. Tortosa Departamento de Zoología, Universidad de Córdoba, Edificio Charles Darwin, Campus de Rabanales, 14071 Córdoba, Spain
Keywords: agricultural intensification, landscape homogenization, land use changes, squamate, Vitis vinifera, lizards


Aim of the study: Traditional vineyards have, in the last few decades, been transformed into trellis systems, but little research has been carried out into the consequences as regards biodiversity. We compared the abundance and species richness of reptiles in conventional-traditional vineyards and trellis vineyards.

Area of study: The study was conducted in a wine appellation area of origin denominated as Montilla-Moriles, Southern Spain.

Material and methods: Reptile’s species richness and abundance were estimated by walking transects in 24 different vineyards (12 trellis and 12 traditional vineyards) in four consecutive years.

Main results: The results showed an extremely low abundance in both management systems, since no reptiles were recorded in 43.1% of the transects. However, there was a greater abundance and diversity of reptiles in the traditional vineyards than in the trellis vineyards, with 7 vs. 3 species being found in traditional and trellis vineyards, respectively.

Research highlights: The lack of refuge in trellis vineyards owing to the vertical growth of plants, whose branches grow higher from the ground, is probably the main cause of the lower abundance and species richness found in trellis systems, since both types of vineyard had bare ground owing to ploughing and the application of herbicides. Since the transformation of traditional vineyards into those with trellis systems is often subsidized, this modernization should be accompanied by certain agri-environmental measures (e.g., cover crops, artificial refuges or natural hedges) in order to compensate for the associated negative effects.


Download data is not yet available.


Aparicio A, 2008. Descriptive analysis of the 'relictual' Mediterranean landscape in the Guadalquivir River valley (southern Spain): a baseline for scientific research and the development of conservation action plans. Biodivers Conserv 17: 2219-2232.

Arlettaz R, Maurer ML, Mosimann-Kampe P, Nusslé S, Abadi F, Braunisch V, Schaub M, 2012. New vineyard cultivation practices create patchy ground vegetation, favouring Woodlarks. J Ornithol 153: 229-238.

Assandri G, Bogliani G, Pedrini P, Brambilla M, 2017a. Insectivorous birds as 'non-traditional' flagship species in vineyards: Applying a neglected conservation paradigm to agricultural systems. Ecol Indic 80: 275-285.

Assandri G, Bogliani G, Pedrini P, Brambilla M, 2017b. Assessing common birds' ecological requirements to address nature conservation in permanent crops: Lessons from Italian vineyards. J Environ Manage 191: 145-154.

Assandri G, Bernardi A, Schmoliner A, Bogliani G, Pedrini P, Brambilla M, 2018. A matter of pipes: Wryneck Jynx torquilla habitat selection and breeding performance in an intensive agroecosystem. J Ornithol 159: 103-114.

Ayres C, Domínguez-Costas M, 2021. Arboreal behavior in the Lusitanian Wall Lizard, Podarcis guadarramae (Boscá 1916). Reptiles Amphib 28: 13-14.

Biaggini M, Corti C, 2015. Reptile assemblages across agricultural landscapes: where does biodiversity hide? Anim Biodivers Conserv 38: 163-174.

Biaggini M, Corti C, 2021. Occurrence of lizards in agricultural land and implications for conservation. Herpetol J 31: 77-84.

Biddoccu M, Guzmán G, Capello G, Thielke T, Strauss P, Winter S, et al., 2020. Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. Int Soil Water Conserv Res 8: 337-353.

BOJA, 2020. Orden de 24 de abril de 2020, por la que se aprueban las bases reguladoras para la concesión de ayudas a la reestructuración y reconversión de viñedo incluidas en el programa de apoyo al sector vitivinícola en el marco 2019-2023, y se efectúa su convocatoria para el ejercicio 2021. Boletín Oficial de la Junta de Andalucía 83, 4 de mayo.

Burnham KP, Anderson DR, Huyvaert KP, 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65: 23-35.

Cabodevilla X, Arroyo B, Wright AD, Salguero AJ, Mougeot F, 2021. Vineyard modernization drives changes in bird and mammal occurrence in vineyard plots in dry farmland. Agric Ecosyst Environ 315: 107448.

Carpio AJ, Cabrera M, Tortosa FS, 2015. Evaluation of methods for estimating species richness and abundance of reptiles in olive groves. Herpetol Conserv Biol 10: 54-63.

Carpio AJ, Oteros J, Tortosa FS, Guerrero-Casado J, 2016. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecol 70: 103-111.

Carpio AJ, Castro J, Mingo V, Tortosa FS, 2017. Herbaceous cover enhances the squamate reptile community in woody crops. J Nat Conserv 37: 31-38.

Casas F, Gurarie E, Fagan WF, Mainali K, Santiago R, Hervás I, et al., 2020. Are trellis vineyards avoided? Examining how vineyard types affect the distribution of great bustards. Agric Ecosyst Environ 289: 106734.

Chiatante G, Pellitteri-Rosa D, Torretta E, Nonnis Marzano F. Meriggi A, 2021. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol Indic 130: 108060.

Clarke KR, Gorley RN, 2006. PRIMER v6: User Manual/Tutorial. Primer-E, Plymouth.

Cole LJ, Kleijn D, Dicks LV, Stout JC, Potts SG, Albrecht M et al., 2020. A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. J Appl Ecol 57: 681-694.

Diego-Rasilla FJ, Perez-Mellado V, 2003. Home range and habitat selection by Podarcis hispanica (Squamata, Lacertidae) in Western Spain. Folia Zool 52: 87-98.

Donald PF, Green RE, Heath MF, 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc Royal Soc B: Biol Sci 268: 25-29.

Donald PF, Pisano G, Rayment MD, Pain DJ, 2002. The common agricultural policy, EU enlargement and the conservation of Europe's farmland birds. Agric Ecosyst Environ 89: 167-182.

EC, 2016. Commission Delegated Regulation (EU) 2016/1149 of 15 April 2016 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards the national support programmes in the wine sector and amending Commission Regulation (EC) No 555/2008. Official Journal of the European Union L 190/1.

Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S et al., 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ 200: 219-234.

Geldenhuys M, Gaigher R, Pryke JS, Samways MJ, 2021. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric Ecosyst Environ 307: 107222.

Godinho S, Santos AP, Sá-Sousa P, 2011. Montado management effects on the abundance and conservation of reptiles in Alentejo, Southern Portugal. Agrofor Syst 82: 197-207.

Guerrero-Casado J, Mármol-Melendo M, Bellido FS, López-Guerrero S, Llorca AB et al., 2021. Actualización de la distribución de los reptiles de la provincia de Córdoba: prioridades de especies y lugares a muestrear. Trianoi 6: 17-29.

Hutchens SJ, DePerno CS, 2009. Efficacy of sampling techniques for determining species richness estimates of reptiles and amphibians. Wildl Biol 15: 113-122.

Kaliontzopoulou A, Sillero N, Martínez-Fereiría F, Carretero MA, Brito JC, 2009. Podarcis hispanica complex (North African Wall Lizard). Arboreal Behavior. Herpetol Rev 40: 224-225.

Kazes K, Rotem G, Ziv Y, 2020. Effects of vineyards and olive plantations on reptiles in a mediterranean agroecosystem. Herpetologica 76: 414-422.

MAPA, 2017. Aplicación de la medida de reestructuración y reconversión del viñedo. Ejercicio 2016, Dir. Gral. Producciones y Mercados, Subdir. Gral. Frutas y Hortalizas y Vitivinicultura, Ministerio de Agricultura, Pesca y Ganadería.

MAPA, 2020. Encuesta sobre superficies y rendimientos de cultivos. Análisis de las plantaciones de viñedo en España. Subsecr. Agric. Pesc. Alim. Subdir. Gral. Análisis, Coordinación y Estadística Ministerio de Agricultura, Pesca y Alimentación.

McGarigal K, Cushman SA, Ene E, 2012. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Univ. of Massachusetts, Amherst.

Montero García F, Brasa Ramos A, Montero Riquelme F, Carsjens GJ, 2017. A territorial approach to assess the transition to trellis vineyards in special protection areas for steppe birds in Spain. Land Use Policy 67: 27-37.

Paiola A, Assandri G, Brambilla M, Zottini M, Pedrini P, Nascimbene J, 2020. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: A global-scale systematic review. Sci Total Environ 706: 135839.

Pe'er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG et al., 2014. EU agricultural reform fails on biodiversity. Science 344(6188): 1090-1092.

Pe'er G, Zinngrebe Y, Hauck J, Schindler S, Dittrich A, Zingg S, et al., 2017. Adding some green to the greening: improving the EU's ecological focus areas for biodiversity and farmers. Conserv Lett 10: 517-530.

Pe'er G, Zinngrebe Y, Moreira F, Sirami C, Schindler S, Müller R, et al., 2019. A greener path for the EU common agricultural policy. Science 365: 449-451.

Salvador A, Martin J, López P, 1995. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav Ecol 6: 382-387.

Salvador A, Pleguezuelos JM, Reques R, 2021. Guía de los anfibios y reptiles de España. Asociación Herpetológica Española, Madrid.

Science for Environment Policy, 2017. Agri-environmental schemes: how to enhance the agriculture-environment relationship. Thematic Issue 57, produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol.

Symonds MRE, Moussalli A, 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav Ecol Sociobiol 65: 13-21.

Torquati B, Giacchè G, Venanzi S, 2015. Economic analysis of the traditional cultural vineyard landscapes in Italy. J Rural Stud 39: 122-132.

Viers JH, Williams JN, Nicholas KA, Barbosa O, Kotzé I, Spence L, et al., 2013. Vinecology: pairing wine with nature. Conserv Lett 6: 287-299.

Vinatier F, Arnaiz AG, 2018. Using high-resolution multitemporal imagery to highlight severe land management changes in Mediterranean vineyards. App Geogr 90: 115-122.

Voříšek P, Jiguet F, Van Strien A, Škorpilová J, Klvaňová A, Gregory RD, 2010. Trends in abundance and biomass of widespread European farmland birds: how much have we lost? Lowland Farmland Birds III: Delivering Solutions in an Uncertain World. 1-24.

How to Cite
Guerrero-CasadoJ., CarpioA. J., Canós-BurgueteM., Torrijo-SalesaM., & TortosaF. S. (2022). The modernization of traditional vineyards into intensive trellis systems reduces the species richness and abundance of reptiles. Spanish Journal of Agricultural Research, 20(2), e0302.
Agricultural environment and ecology