Greenhouse gas emissions associated to sprinkler-irrigated alfalfa under semi-arid Mediterranean conditions

  • Ramon Isla Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente (Unidad asociada a EEAD-CSIC Suelos y Riegos), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain https://orcid.org/0000-0001-8913-853X
  • Monica Guillén Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente (Unidad asociada a EEAD-CSIC Suelos y Riegos), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain https://orcid.org/0000-0003-0226-4053
  • Eva T. Medina Departamento Suelo y Agua, Estación Experimental de Aula Dei (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain https://orcid.org/0000-0002-7726-881X
  • Borja Latorre Departamento Suelo y Agua, Estación Experimental de Aula Dei (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain https://orcid.org/0000-0002-6720-3326
  • Dolores Quílez Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente (Unidad asociada a EEAD-CSIC Suelos y Riegos), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain https://orcid.org/0000-0002-2638-9443
  • José Cavero Departamento Suelo y Agua, Estación Experimental de Aula Dei (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain https://orcid.org/0000-0003-2656-3242
Keywords: Nitrous oxide, Methane, Alfalfa termination

Abstract

Aim of the study: Alfalfa is one the most important forage legume crop worldwide but little information is available regarding to greenhouse gas emissions (GHG) under Mediterranean sprinkler-irrigated conditions.

Area of study: Middle Ebro valley, Spain

Materials and methods: The GHG emissions during two alfalfa growing periods (4th and 5th stands) were evaluated using both the static method chambers and two automatic chambers coupled with a photoacoustic equipment that measured short-term gas emissions.

Main results: Year-average CH4 fluxes were -0.71 g C ha-1 day-1, generally no significantly different from zero. Year-average N2O flux was 3.96 g N ha-1 day-1 with higher fluxes associated to some specific large rainfall or irrigation events. Average cumulative emissions of 865 g N ha-1 year-1 were found. We found short-term peaks of N2O (up to 160 g N ha-1 day-1) associated with high values of soil water filled pore space (WFPS) that can go unnoticed using the static chamber procedure. In spite of the higher soil NO3‾ concentration in the alfalfa-precedent field compared to the maize-precedent field, no significant differences in cumulative N2O emissions were observed in the two-month period after alfalfa or maize residues incorporation.

Research highlights: Low GHG emissions were found in an irrigated alfalfa crop compared to N-fertilized crops but a deeper knowledge of the limiting factors of denitrification observed during some anoxic events (WFPS>90%) is necessary to properly quantify N2O emissions in irrigated alfalfa.

Downloads

Download data is not yet available.

References

Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrig Drain paper 56, Rome, 300(9).

Alvaro-Fuentes J, Arrúe JL, Cantero-Martínez C, Isla R, Plaza-Bonilla D, Quílez D, 2016. Fertilization scenarios in sprinkler-irrigated corn under mediterranean conditions: Effects on greenhouse gas emissions. Soil Sci Soc Am J 80(3): 662-671. https://doi.org/10.2136/sssaj2015.04.0156

Alves BJR, Smith KA, Flores RA, Cardoso AS, Oliveira WRD, Jantalia CP, et al., 2012. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem 46: 129-135. https://doi.org/10.1016/j.soilbio.2011.11.022

Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH, 2015. Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34: 327-380. https://doi.org/10.1080/07352689.2014.898462

Barrat HA, Evans J, Chadwick DR, Clark IM, Le Cocq K, Cardenas LM, 2021. The impact of drought and rewetting on N2O emissions from soil in temperate and Mediterranean climates. Eur J Soil Sci 72: 2504-2516. https://doi.org/10.1111/ejss.13015

Beauchamp EG, Bergstrom DW, Burton DL, 1996. Denitrification and nitrous oxide production in soil fallowed or under alfalfa or grass. Commun Soil Sci Plant Anal 27(1-2): 87-99. https://doi.org/10.1080/00103629609369546

Bergstermann A, Cardenas LM, Bol R, Gilliam LM, Goulding KWT, Meijide A et al., 2011. Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification. Soil Biol Biochem 43: 240-250. https://doi.org/10.1016/j.soilbio.2010.10.003

Bouwman AF, 1996. Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosys 46(1): 53-70. https://doi.org/10.1007/BF00210224

Burger M, Haden VR, Chen H, Six J, Horwath WR, 2016. Stand age affects emissions of N2O in flood-irrigated alfalfa: a comparison of field measurements, DNDC model simulations and IPCC Tier 1 estimates. Nutr Cycl Agroecosys 106(3): 335-345. https://doi.org/10.1007/s10705-016-9808-8

Cavero J, Faci JM, Medina ET, Martínez-Cob A, 2017. Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate. Agric Water Manage 191: 184-192. https://doi.org/10.1016/j.agwat.2017.06.018

Cela S, Salmeron M, Isla R, Cavero J, Santiveri F, Lloveras J, 2011. Reduced nitrogen fertilization to corn following alfalfa in an irrigated semiarid environment. Agron J 103(2): 520-528. https://doi.org/10.2134/agronj2010.0402

Charles A, Rochette P, Whalen JK, Angers DA, Changtigny MH, Bertrand N, 2017. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agr Ecosyst Environ 236: 88-98. https://doi.org/10.1016/j.agee.2016.11.021

Ellert BH, Janzen HH, 2008. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can J Soil Sci 88(2): 207-217. https://doi.org/10.4141/CJSS06036

Franco-Luesma S, Alvaro-Fuentes J, Plaza-Bonilla D, Arrúe JL, Cantero-Martinez C, Cavero J, 2019. Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agric Water Manage 221: 303-311. https://doi.org/10.1016/j.agwat.2019.03.042

Franco-Luesma S, Cavero J, Plaza-Bonilla D, Cantero-Martínez C, Tortosa G, Bedmar EJ, Álvaro-Fuentes J, 2020. Irrigation and tillage effects on soil nitrous oxide emissions in maize monoculture. Agron J 112: 56-71. https://doi.org/10.1002/agj2.20057

Gelfand I, Shcherbak I, Millar N, Kravchenko AN, Robertson GP, 2016. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA. Global Change Biol 22(11): 3594-3607. https://doi.org/10.1111/gcb.13426

Goodroad LL, Keeney DR, Peterson LA, 1984. Nitrous oxide emissions from agricultural soils in Wisconsin. J Environ Qual 13(4): 557-561. https://doi.org/10.2134/jeq1984.00472425001300040010x

Grossman RB, Reinsch TG, 2002. Bulk density and linear extensibility. Methods of soil analysis: Part 4 physical methods. SSSA Book Series 2.1 5: 201-228. https://doi.org/10.2136/sssabookser5.4.c9

Holland EA, Robertson GP, Greenberg J, Groffman PM, Boone RD, Gosz JR, 1999. Soil CO2, N2O, and CH4 exchange. In: Standard soil methods for long-term ecological research; Robertson GP et al. (eds). Oxford Univ Press, NY, pp: 185-201.

Ingram LJ, Schuman GE, Parkin TB, Mortenson M, 2015. Trace gas fluxes from a Northern mixed-grass prairie interseeded with Alfalfa. Plant Soil 386(1-2): 285-301. https://doi.org/10.1007/s11104-014-2264-9

IPCC, 2006. Agriculture, forestry and other land use Chapter 1: Introduction. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.

IPCC, 2014. Climate Change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK, and New York.

Isla R, Guillén M, Aibar J, Quílez D, 2020. Variabilidad espacial de emisiones de óxido nitroso y metano en una parcela comercial de trigo blando bajo sistema de riego por aspersión. VII Remedia Workshop, 22-23 Sep, Elche, Spain. http://hdl.handle.net/10532/5084.

Lindenmayer RB, Hansen NC, Brummer J, Pritchett JG, 2011. Deficit irrigation of alfalfa for water-savings in the Great Plains and Intermountain West: A review and analysis of the literature. Agron J 103: 45-50. https://doi.org/10.2134/agronj2010.0224

Linn DM, Doran JW, 1984 Effect of water‐filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48(6): 1267-1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x

López-Bellido L, Muñoz-Romero V, Fernández-García P, López-Bellido RJ, 2014. Ammonium accumulation in soil: the long-term effects of tillage, rotation and N rate in a Mediterranean Vertisol. Soil Use Manag 30(4): 471-479. https://doi.org/10.1111/sum.12147

MacKenzie AF, Fan MX, Cadrin F, 1997. Nitrous oxide emission as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization. Can J Soil Sci 77(2): 145-152. https://doi.org/10.4141/S96-104

Mateo-Marín N, 2020. Efficacy of nitrification and urease inhibitors to reduce nitrogen losses under optimal management practices in irrigated Mediterranean agrosystems. Doctoral Thesis, University of Zaragoza, Zaragoza, Spain.

Mateo-Marín N, Quílez D, Guillén M, Isla R, 2020. Feasibility of stabilised nitrogen fertilisers decreasing greenhouse gas emissions under optimal management in sprinkler irrigated conditions. Agr Ecosyst Environ 290: 106725. https://doi.org/10.1016/j.agee.2019.106725

Millar N, Ndufa JK, Cadisch G, Baggs EM, 2004. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochem Cy 18(1): GB1032. https://doi.org/10.1029/2003GB002114

Muhammad W, Vaughan SM, Dalal RC, Menzies NW, 2011. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biol Fert Soils 47(1): 15-23. https://doi.org/10.1007/s00374-010-0497-1

Osterholz WR, Kucharik CJ, Hedtcke JL, Posner JL, 2014. Seasonal nitrous oxide and methane fluxes from grain- and forage-based production systems in Wisconsin, USA. J Environ Qual 43(6): 1833-1843. https://doi.org/10.2134/jeq2014.02.0077

Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S et al., 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16(5): 810-822. https://doi.org/10.1007/s10021-013-9650-7

Pu GX, Saffigna PG, Strong WM, 1999. Potential for denitrification in cereal soils of northern Australia after legume or grass-legume pastures. Soil Biol Biochem 31(5): 667-675. https://doi.org/10.1016/S0038-0717(98)00154-0

Rochette P, Janzen HH, 2005. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosys 73(2-3): 171-179. https://doi.org/10.1007/s10705-005-0357-9

Samad MS, Bakken LR, Nadeem S, Clough TJ, de Klein CAM, Richards KG et al., 2016. High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization. PLoS ONE 11(3): e0151713. https://doi.org/10.1371/journal.pone.0151713

Schmeer M, Loges R, Dittert K, Senbayram M, Horn R, Taube F, 2014. Legume-based forage production systems reduce nitrous oxide emissions. Soil Till Res 143: 17-25. https://doi.org/10.1016/j.still.2014.05.001

Shelp ML, Beauchamp EG, Thurtell GW, 2000. Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues. Commun Soil Sci Plan 31(7-8): 877-892. https://doi.org/10.1080/00103620009370484

Soil Survey Staff, 2014. Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service: Washington, DC.

Steduto P, Cetinkoku O, Albrizio R, Kanber R, 2002. Automated closed-system canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes. Agric Forest Meteorol 111: 171-186. https://doi.org/10.1016/S0168-1923(02)00023-0

Szukics U, Szukics U, Abell GC, Hodl V, Mitter B, Sessitsch A et al., 2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72(3): 395-406. https://doi.org/10.1111/j.1574-6941.2010.00853.x

Wagner-Riddle C, Thurtell GW, Kidd GK, Beauchamp EG, Sweetman R, 1997. Estimates of nitrous oxide emissions from agricultural fields over 28 months. Can J Soil Sci 77(2): 135-144. https://doi.org/10.4141/S96-103

Walkiewicz A, Brzezinska M, Bieganowski A, 2018. Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biol Fert Soils 54(7): 861-870. https://doi.org/10.1007/s00374-018-1302-9

Zhong Z, Nelson LM, Lemke RL, 2011. Nitrous oxide emissions from grain legumes as affected by wetting/drying cycles and crop residues. Biol Fert Soils 47(6): 687-699. https://doi.org/10.1007/s00374-011-0575-z

Zhu X, Burger M, Doane TA, Horwath WR, 2013. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. P Nat Acad Sci 110(16): 6328-6333. https://doi.org/10.1073/pnas.1219993110

Published
2022-07-11
How to Cite
IslaR., GuillénM., MedinaE. T., LatorreB., QuílezD., & CaveroJ. (2022). Greenhouse gas emissions associated to sprinkler-irrigated alfalfa under semi-arid Mediterranean conditions. Spanish Journal of Agricultural Research, 20(3), e0304. https://doi.org/10.5424/sjar/2022203-18416
Section
Agricultural environment and ecology