Community structure of epigeic arthropods in barley (Hordeum vulgare L.) soils

  • Vladimír Langraf Constantine the Philosopher University, Faculty of Natural Sciences, Dept. of Zoology and Anthropology, Tr. A. Hlinku 1, 949 74 Nitra
  • Kornélia Petrovičová University of Agriculture, Faculty of Agrobiology and Food Resources Slovak, Institute of Plant and Environmental Sciences, Tr. A. Hlinku 2, 949 76 Nitra
  • Janka Schlarmannová Constantine the Philosopher University, Faculty of Natural Sciences, Dept. of Zoology and Anthropology, Tr. A. Hlinku 1, 949 74 Nitra
Keywords: epigeic groups, agrosystems, soil diversity, soil ecosystems, ecotone, Slovakia


Aim of study: The study of epigeic arthropods provides information on how ecosystems respond to different management practices. Changes in the structure of epigeic groups reflect changes in the ecological status of habitats. We assessed the influence of semi-natural habitats and environmental variables on the dispersion of the epigeic groups.

Area of study: Southwestern part of Slovakia

Material and methods: Between 2018 and 2020, six barley (Hordeum vulgare L.) fields were selected each year. Five pitfall traps were placed on each field and environmental variables (soil pH and moisture, light conditions, soil N, P, K) were analysed. We collected 8,730 individuals belonging to 14 taxonomic groups. The variables of the study sites (habitat, locality name, cadastral area, altitude, coordinates of localities) were also analysed.

Main results: We observed a decrease in the average number of individuals in the direction from pitfall traps 1 (semi-natural areas) to 5 (barley crop) between July and August. The number of individuals was similar in May and June. The dispersion of epigeic arthropods was affected by soil moisture, pH soil, phosphorus, potassium and nitrogen. In the beetles model group, which was represented by the highest number of individuals, we confirmed an increasing number of individuals with increasing values of K, P, N and soil moisture. The neutral pH of the soil was optimal for beetles.

Research highlights: The ecotone rule does not apply during all months, so we have contributed new information about the ecotone rule. Agricultural intensification affects soil arthropods, a taxonomic group with an important role in the functioning of agricultural ecosystems.


Download data is not yet available.


Alignier A, Raymond L, Deconchat M, Menozzi P, Monteil C, Sarthou JP, et al., 2014. The effect of semi-natural habitats on aphids and their natural enemies across spatial and temporal scales. Biol Cont 77: 76-82.

Asteraki EJ, 1993. The potential of carabid beetles to control slugs in grass/clover swards. Entomophaga 38: 193-198.

Attwood SJ, Maron M, House APN, Zammit C, 2008. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17: 585-599.

Avtaeva TA, Sukhodolskaya RA, Brygadyrenko VV, 2021. Modeling the bioclimating range of Pterostichus melanarius (Coleoptera, Carabidae) in conditions of global climate change. Biosyst Divers 29: 140-150.

Baranová B, Manko P, Jászay T, 2015. Waste dumps as local biodiversity hotspots for soil macrofauna and ground beetles (Coleoptera: Carabidae) in the agricultural landscape. Ecol Eng 81: 1-13.

Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, et al., 2016. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530: 85-88.

Bažok R. Kos T, Drmić Z, 2015. Importance of ground beetles (Coleoptera: Carabidae) for biological stability of agricultural habitat focus on cultivation of sugar beet. Glasilo biljne zaštite 15: 264-276.

Berg MP, Bengtsson J, 2007. Temporal and spatial variability in soil food web structure. Oikos 116: 1789-1804.

Boháč J, Jahnová Z, 2015. Land use changes and landscape degradation in central and eastern Europe in the last decades: Epigeic invertebrates as bioindicators of landscape changes. In: Environmental indicators; Armon R, Hanninen O (eds.). pp: 395-420. Springer, Dordrecht.

Boutin C, Jobin B, Bélanger L, Choinière L, 2002. Plant diversity in three types of hedgerows adjacent to cropfields. Biodivers Conserv 11: 1-25.

Brussaard L, De Ruiter PC, Brown GG, 2007. Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121: 233-244.

Brygadyrenko V, 2015. Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. Int J Environ Res 9: 1183-1192.

Büchs W, Harenberg A, Zimmermann J, Weiβ B, 2003. Biodiversity, the ultimate agri-environmental indicator? Potential and limits for the application of faunistic elements as gradual indicators in agroecosystems. Agric Ecosyst Environ 98: 99-123.

Carcamo HA, Spence JR, 1994. Crop type effects on the activity and distribution of ground beetles (Coleoptera, Carabidae). Environ Entomol 23: 684-692.

Chiawo DO, Ogo CKPO, Kioko EN, Otiende VA, Gikungu MW, 2017. Bee diversity and floral resources along a disturbance gradient in Kaya Muhaka forest and surrounding farmlands of coastal Kenya. J Pollination Ecol 20: 51-59.

Dennis P, Fry GLA, 1992. Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agric Ecosyst Environ 40: 95-115.

Doblas-Miranda E, Sánchez-Piñero F, González-Megías A, 2007. Soil macroinvertebrate fauna of a Mediterranean arid system: Composition and temporal changes in the assemblage. Soil Biol Biochem 39: 1916-1925.

Dobrovodská M, Kanka R, David S, Kolár J, Špulerová J, Štefunková D, et al., 2019. Assessment of the biocultural value of traditional agricultural landscape on a plot-by-plot level: case studies from Slovakia. Biodivers Conserv 28: 2615-2645.

Dudley N, Alexander S, 2017. Agriculture and biodiversity: a review. Biodiversity 18: 45-49.

Fazekašová D, Bobuľovská L, 2012. Soil organisms as an indicator of quality and environmental stress in the soil ecosystem. Životné prostredie 46: 103-106.

Gill HK, McSorley R, Branham M, 2011. Effect of organic mulches on soil surface insects and arthropods. Fla Entomol 94: 226-232.

Greenberg CH, McGrane A, 1996. A comparison of relative abundance and biomass of ground-dwelling arthropods under different forest management practices. For Ecol Manag 89: 31-41.

Haddaway NR, Brown C, Eggers S, Josefsson J, Kronvang B, Randall N, Uusi-Kämppä J, 2016. The multifunctional roles of vegetated strips around and within agricultural fields. A systematic map protocol. Environ Evid 5: 1-27.

Hails RS, 2002. Assessing the risks associated with new agricultural practices. Nature 418: 685-688.

Harvey JA, Van Der Putten WH, Turin H, Wagenaar R, Bezemer TM, 2008. Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agric Ecosys Environ 127: 100-106.

Holecová M, Lukáš J, Harakaľová E, 2003. Mravce (Hymenoptera, Formicidae) dubovo-hrabových lesov v okolí Bratislavy (JZ Slovensko). Folia faunistica Slovaca 8: 63-69.

Khodashenas A, Koocheki A, Rezvani P, Moghaddam PR, Lakzian A, 2012. Evaluation of structural biodiversity in natural systems of arid and semiarid regions: 1-Soil characteristic and biodiversity. J Nat Environ 6: 165-173.

Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH, 2016. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci 113:140-145.

Kumar S, Mishra Ch, Sarkar B, Singh SS, 2012. Barley (Hordeum vulgare L.). In: Breeding field crops; Bhardwaj DN (ed). pp. 99-112). Agrobios India.

Langellotto GA, Denno RF, 2004. Responses of invertebrate natural enemies to complex-structured habitats: A metaanalytical synthesis. Oecologia 139: 1-10.

Langraf V, David S, Babosová R, Petrovičová K, Schlarmannová J, 2020a. Change of ellipsoid biovolume (EV) of ground beetles (Coleoptera, Carabidae) along an urban-suburban-rural gradient of central Slovakia. Diversity 12: 475.

Langraf V, Petrovičová K, David S, Svoradová A, Schlarmannová J, 2020b. Prediction of ecological importance of Carabidae biotopes using community index of the ground beetles (Iks) in the southern part of central Slovakia. Appl Ecol Environ Res 18: 1197-1210.

Lenoir L, Lennartsson T, 2010. Effects of timing of grazing on arthropod communities in semi-natural grasslands. J Insect Sci 10: 60.

Lionello P, Malanotte-Rizzoli P, Boscolo R (eds), 2006. Mediterranean climate variability. Elsevier Sci, San Diego, CA, USA. 438 pp.

Magura T, Ferrante M, Lövei LG, 2020. Only habitat specialists become smaller with advancing urbanization. Glob Ecol Biogeogr 29: 1978-1987.

Majeed W, Rana N, de Azevedo K, Elmo B, Nargis S, 2020. Seasonality and climatic factors affect diversity and distribution of arthropods around wetlands. Pakist J Zool 52: 2135-2144.

Majzlan O, 2009. Bezchordáty a chordáty. Bratislava: Danubiaprint, a.s. 286 pp.

Maqsood S, Rana N, Majeed W, Nargis S, 2020. Effect of dawn and dusk on the diversity and abundance of arthropods in a mixed agroecosystem. Pak J Agric Sci 57: 975-980.

Marshall EJP, 2004. Agricultural landscapes: field margin habitats and their interaction with crop production. J Crop Improv 12: 365-404.

Microsoft SQL Server 2017; Microsoft Corporation: Redmond, WA, USA, 2017.

Moghimian N, Kooch Y, 2013. The effect some of physiographic factors and soil physico-chemical features of hornbeam forest ecosystem on earthworm's biomass. J Wood For Sci Technol 20:1-21.

Morris T, Campos M, 1999. Predatory insects in olive-grove soil. Zool Baetica 10: 149-160.

New TR, 2005. Invertebrate conservation and agricultural ecosystems. Cambridge Univ Press, Cambridge, UK. 368 pp.

Novák K, Balát F, Bartoš E, Bouček Z, Daniel M, Dlabola J, et al., 1969. Metódy sběru a preparace hmyzu. Praha: Academia. 243 pp.

Nowakowski M, Pywell R, 2016. Habitat creation and management for pollinators. Centre for Ecology & Hydrology. Wallingford, UK, 92 pp.

Paoletti MG, Hassall M, 1999. Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74: 157-165.

Pérez-Bote PJ, Romero AJ, 2012. Epigeic soil arthropod abundance under different agricultural land uses. Span J Agric Res 10: 55-61.

Pokorný V, Šifner F, 2004. Book of Insecta. The Prague: Paseka. 221 pp.

Porhajašová J, Noskovič J, Rakovská A, Babošová M, Čeryová T, 2015. Biodiversity and dynamics of occurence of epigeic groups in different types of farming. Acta Hortic et Regiot 1: 5-10.

Porhajašová J, Babošová M, Noskovič J, Ondrišík P, 2018. Long-term developments and biodiversity in Carabid and Staphylinid (Coleoptera: Carabidae and Staphylinidae) fauna during the application of organic fertilizers under agroecosystem conditions. Pol J Environ Stud 27: 2229-2235.

Purkart A, Kollár J, Goffová K, 2019. Fauna of ants (Hymenoptera: Formicidae) of selected sand habitats in Podunajsko Region. Naturae tutela 23: 101-111.

Ramzan U, Majeed W, Rana N, Nargis S, 2021. Occurrence of different insect species with emphasis on their abundance and diversity in different habitats of Faisalabad, Pakistan. Int J Trop Insect Sci 41: 1237-1244.

Rana N, Saleem M, Majeed W, Jalal F, Ehsan N, Nargis S, 2019. Diversity of arthropods regarding habitat specialty in agroecosystem of Faisalabad, Pakistan. GSC Biol Pharm Sci 6: 01-08.

Rimsha N, Rana N, Koch EBA, Majeed W, Nargis S, 2020. Abundance and diversity of foliage insects among different olericulture crops. GSC Biol Pharm Sci 10: 62-69.

Simão F, Carretero MA, Amaral MJ, Soares AMVM, Mateos E, 2015. Composition and seasonal variation of epigeic arthropods in field margins of NW Portugal. Turk J Zool 39: 404-411.

Singh D, Babu KS, Mann SK, Meeta M, Karwasra SS, Kalappanavar I, et al., 2010. Integrated pest management in barley (Hordeum vulgare). Ind J Agric Sci 80: 437-442.

Smith J, Potts SG, Woodcock BA, Eggleton P, 2008. Can arable field margins be managed to enhance their biodiversity, con-servation and functional value for soil macrofauna? J Appl Ecol 45: 269-278.

Starý P, Gerding I, 1993. Environmental research on aphid parasitoid biocontrol agents in Chile (Hym., Aphidiidae; Hom., Aphidoidea). J Appl Entomol 115: 292-306.

Statsoft, Inc. 2004. Statistica Cz [Softwarový systém na analýzu dat], verze 7.

Sotherton NW, Dover JW, Rands MRW, 1988. The effects of pesticide exclusion strips on faunal populations in Great Britain. Ecol Bull 39: 197-199.

Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P, 2001. Ecological impacts of arable intensification in Europe. J Environ Manag 63: 337-365.

Taha H, Shivanand P, Zainudin AAM, Hadanan AN, 2021. Identification of culturable marine fungi and bacteria from coastal region in Brunei Darussalam. Biodiversitas 22: 1326-1331.

Ter Braak CJF, Šmilauer P, 2012. Canoco reference manual and user's guide: software for ordination, vers 5.0, 496 pp. Microcomputer Power, Ithaca, USA.

Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD, 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18: 761-771.

Vician V, Stašiov S, Kočík K, Hazuchová L, 2011. The structure of community Coleoptera: Carabidae on various farmed areas in the Podpoľanie region and their indication. Acta Facultatis Ecologiae 24: 123-131.

Vician V, Svitok M, Kočík K, Stašiov S, 2015. The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages. Biologia 70: 240-251.

Vician V, Svitok M, Michalková E, Lukáčik I, Stašiov S, 2018. Influence of tree species and soil properties on ground beetle (Coleoptera: Carabidae) communities. Acta Oecol 91: 120-126.

Wilson EO, 2006. Genomics: How to make a social insect. Nature 443: 919-920.

Wolda H, 1988. Insect seasonality: Why? Annu Rev Ecol Syst 19: 1-18.

How to Cite
LangrafV., PetrovičováK., & SchlarmannováJ. (2021). Community structure of epigeic arthropods in barley (Hordeum vulgare L.) soils. Spanish Journal of Agricultural Research, 19(4), e0304.
Agricultural environment and ecology