Systemin modulates defense responses in roots of tomato plants (Solanum lycopersicum L.) during the pre-colonization stage of the mycorrhizal symbiosis

  • Blanca M. de la Noval Instituto Nacional de Ciencias Agrícolas (INCA), Ctra. de Tapaste Km. 3.5, Gaveta Postal 1, 32700 San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0001-6094-8328
  • Norma A. Martínez-Gallardo Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Libramiento Norte, Ctra. Irapuato León Km 9.6, 36824 Irapuato, Guanajuato, Mexico http://orcid.org/0000-0001-5726-091X
  • John P. Délano-Frier Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Libramiento Norte, Ctra. Irapuato León Km 9.6, 36824 Irapuato, Guanajuato, Mexico http://orcid.org/0000-0001-6230-8092
Keywords: arbuscular mycorrhizal fungi, wound-responsive genes, glucanases, chitinases

Abstract

Aim of study: The symbiotic association with arbuscular mycorrhizal fungi (AMF) enhances the uptake of soil minerals by the plant, predominantly phosphorus, in return for plant photosynthates. This study was performed to support the premise that the suppression of root defense responses during the pre-colonization stage is required for the subsequent colonization of tomato roots by AMF.

Area of study: This study was performed in the Plant Defense Laboratory of Cinvestav, at Irapuato, Guanajuato, Mexico.

Material and methods: Systemin (SYS) was added, together with spore suspensions of three different AMF species, to young tomato plantlets. The roots were subsequently sampled, 0.5 to 12 h post-application, in order to quantify degree of mycorrhizal colonization, in vitro β-glucanase (GLN) and chitinase (CHI) enzyme activity and wound-responsive gene expression levels.

Main results: The sole application of exogenous SYS induced the rapid expression of a battery of early wound-responsive genes, together with a swift and transient activation of CHI, but not GLN. However, when added together with AMF spores, SYS differentially modulated the activity of these enzymes in an AMF species-dependent manner. Modified lytic activity was preceded or accompanied by the rapid and sustained induction of the RbohD, LOXD and PLA2 genes shortly after contact with AMF spores.

Research highlights: The findings of this study suggest a role for oxylipins and reactive oxygen species in the initial AMF recognition process. They also indicate that exogenous SYS is perceived by the roots, where it modulates the local root defense response to facilitate AMF colonization.

Downloads

Download data is not yet available.

References

Ahmad FH, Wu X, Stintzi A, Schaller A, Schulze WX, 2019. The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteom 18: 1526-1542. https://doi.org/10.1074/mcp.RA119.001367

Álvarez M, De Armas G, Martínez B, 1997. Informe de nuevas variedades. Amalia y Mariela, dos nuevas variedades de tomate de consumo fresco. Cult Trop 18: 83.

Basso V, Veneault-Fourrey C, 2020. Role of jasmonates in beneficial microbe-root interactions. In: Jasmonate in Plant Biology-Methods and Protocols, 2nd Ed; Champion A & Laplaze L (eds). Springer Protocols, pp: 43-68. https://doi.org/10.1007/978-1-0716-0142-6_4

Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S et al., 2018. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytol 218: 1167-1178. https://doi.org/10.1111/nph.14568

Bhandari P, Garg N, 2017. Dynamics of arbuscular mycorrhizal symbiosis and its role in nutrient acquisition: an overview. In: Mycorrhiza-Nutrient uptake, biocontrol, eco-restoration; Varma A, Prasad R, Tuteja N (eds). Springer, pp: 21-43. https://doi.org/10.1007/978-3-319-68867-1_2

Bonfante P, 2018. The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytol 220: 982-995. https://doi.org/10.1111/nph.15397

Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR et al., 2017. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci USA 114: E8118-E8127. https://doi.org/10.1073/pnas.1706795114

Bradford M, 1976. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Campo S, San Segundo B, 2020. Systemic induction of phosphatidylinositol‑based signaling in leaves of arbuscular mycorrhizal rice plants. Sci Rep 10: 15896. https://doi.org/10.1038/s41598-020-72985-6

Casarrubias-Castillo K, Montero-Vargas JM, Dabdoub-González N, Winkler R, Martinez-Gallardo NA, Zañudo-Hernández J et al., 2020. Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. Peer J 8: e8888. https://doi.org/10.7717/peerj.8888

Cui L, Guo F, Zhang J, Yang S, Meng JJ, Geng Y et al., 2019. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci Rep 9: 16281. https://doi.org/10.1038/s41598-019-52630-7

de la Noval BM, Pérez E, Olalde V, Délano JP, Martínez N, 2004. Inducción de β-1,3-glucanasa y quitinasas en plántulas de tomate por hongos micorrizógenos y sistemina. Cult Trop 2: 5-12.

de la Noval B, Pérez E, Martínez B, León O, Martínez-Gallardo N, Délano-Frier J, 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrrhiza 17: 449-460. https://doi.org/10.1007/s00572-007-0122-9

de la Noval-Pons BM, León-Díaz O, Martínez-Gallardo NA, Pérez-Ortega E, Délano-Frier JP, 2017a. Pattern of β-1, 3-glucanase and chitinase activity in the AMF-systemin interaction in tomato. I. Pre-symbiotic phase. Cult Trop 38: 36-43.

de la Noval-Pons BM, León-Díaz O, Martínez-Gallardo NA, Pérez-Ortega E, Délano-Frier JP, 2017b. Activity pattern of β-1, 3-glucanases and chitinases in the AMF-systemin interaction in tomato. II. Early symbiotic phase. Cult Trop 38. 84-91.

Evelin H, Devi TS, Gupta S, Kapoor R, 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front Plant Sci 10: 470. https://doi.org/10.3389/fpls.2019.00470

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA, 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8: 131. https://doi.org/10.1186/1471-2229-8-131

Fester T, Hause G, 2005. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15: 373-379. https://doi.org/10.1007/s00572-005-0363-4

Fichman Y, Mittler R, 2020. Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? Plant J 102: 887-896. https://doi.org/10.1111/tpj.14685

Field KJ, Pressel S, 2018. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220: 996-1011. https://doi.org/10.1111/nph.15158

Fonseca-García C, Zayas AE, Montiel J, Nava N, Sánchez F, Quinto C, 2019. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genomics 20: 800-818. https://doi.org/10.1186/s12864-019-6162-7

Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C et al., 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102: 8066-8070. https://doi.org/10.1073/pnas.0502999102

Hause B, Mrosk C, Isayenkov S, Strack D, 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110. https://doi.org/10.1016/j.phytochem.2006.09.025

He J, Zhang C, Dai H, Liu H, Zhang X, Yang J et al., 2019. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol Plant 12: 1561-1576. https://doi.org/10.1016/j.molp.2019.10.015

Kumar A, Verma JP, 2018. Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiol Res 207: 41-52. https://doi.org/10.1016/j.micres.2017.11.004

Kumari A, Chételat A, Nguyen CT, Farmer EE, 2019. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proc Natl Acad Sci USA 116: 20226-20231. https://doi.org/10.1073/pnas.1907379116

Lanfranco L, Fiorilli V, Gutjahr C, 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220: 1031-1046. https://doi.org/10.1111/nph.15230

León-Morcillo RJ, Martín-Rodríguez JA, Vierheilig H, Ocampo JA, García-Garrido JM, 2012. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. J Exp Bot 63: 3545-3558. https://doi.org/10.1093/jxb/ers010

Liao D, Wang S, Cui M, Liu J, Chen A, Xu G, 2018. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int J Mol Sci 19: 3146. https://doi.org/10.3390/ijms19103146

Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262

Luginbuehl LH, Oldroyd GED, 2017. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol 27: R952-R963. https://doi.org/10.1016/j.cub.2017.06.042

Mahdhi M, Tounekti T, Abada E, Al‐Faifi Z, Khemira H, 2020. Diversity of arbuscular mycorrhizal fungi associated with acacia trees in southwestern Saudi Arabia. J Basic Microbiol 60: 322-330. https://doi.org/10.1002/jobm.201900471

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V et al., 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2: ra45. https://doi.org/10.1126/scisignal.2000448

Navazio L, Mariani P, 2008. Calcium opens the dialogue between plants and arbuscular mycorrhizal fungi. Plant Signal Behav 3: 229-230. https://doi.org/10.4161/psb.3.4.5093

Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P et al., 2007. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144: 673-681. https://doi.org/10.1104/pp.106.086959

Pearce G, Strydom D, Johnson S, Ryan CA, 1991. A polypeptide from tomato leaves induces wound-inducible inhibitor genes. Science 253: 895-898. https://doi.org/10.1126/science.253.5022.895

Pérez E, Rodríguez Y, Hernández MA, de la Noval BM, 2004. Dinámica de inducción de algunos sistemas de defensa en la interacción HMA- tomate (Lycopersicon esculentum Mill.) var. Amalia (I). Inducción de PR2; PR3 y fenilalanina amonio liasa en raíces de tomate de la variedad Amalia. Cult Trop 25: 37-44.

Rodríguez Y, Dalpé Y, Séguin S, Fernández K, Fernández F, Rivera RA, 2011. Glomus cubense sp. nov., an arbuscular mycorrhizal fungus from Cuba. Mycotaxon 118: 337-347. https://doi.org/10.5248/118.337

Ryan CA, 2000. The systemin signaling pathway: Differential activation of plant defensive genes. Biochem Biophys Acta 1477: 112-121. https://doi.org/10.1016/S0167-4838(99)00269-1

Ryan CA, Pearce G, 2003. Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100: 14577-14580. https://doi.org/10.1073/pnas.1934788100

Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG et al., 2020. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 30: 133-147. https://doi.org/10.1007/s00572-019-00927-w

Salzer P, Boller T, 2000. Elicitor induced reactions in mycorrhizae and their suppression. In: Current advances in mycorrhizae research; Podila GK & Douds DD (eds). APS, Am Phytopathol Soc, pp: 1-10.

Salzer P, Corbiere H, Boller T, 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208: 319-325. https://doi.org/10.1007/s004250050565

Segal LM, Wilson RA, 2018. Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet Biol 110: 1-9. https://doi.org/10.1016/j.fgb.2017.12.003

Shimoda Y, Imaizumi‑Anraku H, Hayashi M, 2019. Kinase activity‑dependent stability of calcium/calmodulin‑dependent protein kinase of Lotus japonicus. Planta 250: 1773-1779. https://doi.org/10.1007/s00425-019-03264-6

Schilmiller AL, Howe GA, 2005. Systemic signaling in the wound response. Curr Opin Plant Biol 8: 369-377. https://doi.org/10.1016/j.pbi.2005.05.008

Schüßler A, Walker C, 2010. The Glomeromycota: a species list with new families and new genera. Gloucester: The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University, 58 pp.

Tejeda-Sartorius M, Martínez de la Vega O, Délano-Frier JP, 2008. Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133: 339-353. https://doi.org/10.1111/j.1399-3054.2008.01081.x

Tipton K, 1993. Principles of enzyme assays and kinetic studies. In: Enzyme assays: A practical approach; Eisenthal R & Danson MJ (eds). PAS series. Oxford Univ Press, pp. 1-58.

Vangelisti A, Turrini A, Sbrana C, Avio L, Giordani T, Natali L et al., 2020. Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis. Mycorrhiza 30: 373-387. https://doi.org/10.1007/s00572-020-00950-2

Villagómez-Castro JC, Calvo-Mendez C, Lopez-Romero E, 1992. Chitinase activity in encysting Entamoeba invadens and its inhibition by allosamidin. Mol Biochem Parasitol 52: 53-62. https://doi.org/10.1016/0166-6851(92)90035-I

Wasternack C, Feussner I, 2018. The oxylipin pathways: Biochemistry and function. Annu Rev Plant Biol 69: 363-386. https://doi.org/10.1146/annurev-arplant-042817-040440

Zhang H, Zhang H, Lin J, 2020. Systemin‐mediated long‐distance systemic defense responses. New Phytol 226: 1573-15872. https://doi.org/10.1111/nph.16495

Zheng Y, Wozniak CA, 1997. Adaptation of a β-1,3-glucanase assay to microplate format. Biotechniques 22: 922-926. https://doi.org/10.2144/97225st06

Zou Y, Wu Q, Kuča K, 2021. Unraveling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23: 50-57. https://doi.org/10.1111/plb.13161

Published
2022-05-04
How to Cite
de la NovalB. M., Martínez-GallardoN. A., & Délano-FrierJ. P. (2022). Systemin modulates defense responses in roots of tomato plants (Solanum lycopersicum L.) during the pre-colonization stage of the mycorrhizal symbiosis. Spanish Journal of Agricultural Research, 20(2), e1003. https://doi.org/10.5424/sjar/2022202-18713
Section
Plant protection