Short communication. Evaluation of the efficiency of imidacloprid and Encarsia inaron Walker (Hymenoptera: Aphelinidae) integration to control the whitefly, Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), under greenhouse conditions

  • S.A. Hoseini Department of Plant Protection. Faculty of Agriculture. Urmia University. Urmi. Iran
  • A. A. Pourmirza Department of Plant Protection. Faculty of Agriculture. Urmia University. Urmi. Iran
Keywords: biorational, control, greenhouse whitefly, integrated pest management, interaction, parasitoid

Abstract

The integrated whitefly control systems are based on the contribution of chemical and biological control fostered by conservation of natural enemies. This study attempts to establish the integrated impact of the parasitoid Encarsia inaron Walker (Hymenoptera: Aphelinidae) in junction with the biorational imidacloprid against the greenhouse whitefly, Trialeurodes vaporariorumWestwood (Homoptera: Aleyrodidae), feeding on bean plants cv. Contender under greenhouse condition. Experiments were carried out to establish the individual and combined effects of the parasitoid and insecticide to control the greenhouse whitefly. A synergy effect was observed in the simultaneous use of E. inaron and imidacloprid causing 97.2% mortality in the population of immature whiteflies. There was no significant difference between the application of imidacloprid and the introduction of E. inaron alone which caused 90.1% and 78.7% whitefly mortality, respectively. The application of imidacloprid significantly reduced the percentage of the adult emergence and parasitism of E. inaron to 18% and 25% respectively, compared to control with 47% adult emergence and 57.9% parasitism. The current results suggest that despite some negative impacts of imidacloprid on E. inaron, the combination of these two factors works more efficiently than the use of them separately against the greenhouse whitefly.

Downloads

Download data is not yet available.

References

Bailey K.L., Lazarovits G., 2003. Suppressing soilborne diseases with residue management and organic amendments. Soil Till Res 72, 169-180. http://dx.doi.org/10.1016/S0167-1987(03)00086-2

Choudhary M.I., Dur-E-Shahwar, Parveen Z., Jabbar A., Ali I., Atta-Ur-Rahman, 1995. Antifungal steroidal lactones from Withania coagulance. Phytochemistry 40, 1243-1246. http://dx.doi.org/10.1016/0031-9422(95)00429-B

Dabur R., Ali M., Singh H., Gupta J., Sharma G.L., 2004. A novel antifungal pyrrole derivative from Datura metel leaves. Pharmazie 59, 568-570. PMid:15296098

Gaige A.R., Ayella A., Shuai B., 2010. Methyl jasmonate and ethylene induce partial resistance in Medicago truncatula against the charcoal rot pathogen Macrophomina phaseolina. Physiol Mol Plant Pathol 74, 412-418. http://dx.doi.org/10.1016/j.pmpp.2010.07.001

Gamlie A., Austerweil M., Kritzman G., 2000. Non-chemical approach to soil borne pest management–organic amendments. Crop Prot 19, 847-853. http://dx.doi.org/10.1016/S0261-2194(00)00112-5

Gnanamani A., Priya S.K., Radhakrishnan N., Babu M., 2003. Antibacterial activity of two plant extracts on eight burn pathogens. J Ethnopharmacol 86, 59-61. http://dx.doi.org/10.1016/S0378-8741(03)00044-8

Gupta M., Chi A.B., Ray A.B., 1991. Additional withanolides of Datura metel. J Nat Prod 54, 599-602. http://dx.doi.org/10.1021/np50074a042

Javaid A., Shafique S., Shafique S., 2010a. Herbicidal effects of extracts and residue incorporation of Datura metel against parthenium weed. Nat Prod Res 24, 1426-1437. http://dx.doi.org/10.1080/14786410903075440 PMid:20812130

Javaid A., Shafique S., Shafique S., 2010b. Herbicidal activity of Withania somnifera against Phalaris minor. Nat Prod Res 24, 1457-1468. http://dx.doi.org/10.1080/14786410903169292 PMid:20812133

Ma L., Xie C.M., Li J., Lou F.C., Hu L.H., 2006. Daturametelins H, I, and J: three new withanolide glycosides from Datura metel L. Chem Biodivers 3, 180-186. http://dx.doi.org/10.1002/cbdv.200690021 PMid:17193256

Mccain A.H., BEGA R.V., JENKINSON J.L., 1982 Solar heating fails to control Macrophomina phaseolina. Phytopathology 72, 985-988.

Mihail J.D., Taylor S.J., 1995. Interpreting variability among isolates for Macrophomina phaseolina in pathogenicity, pcynidium production and chlorate utilization. Can J Bot 10, 1596-1603. http://dx.doi.org/10.1139/b95-172

Ndiaye M., Termorshuizen A.J., Van Bruggen A.H.C., 2007. Combined effects of solarization and organic amendment on charcoal rot caused by Macrophomina phaseolina in the Sahel. Phytoparasitica 35, 392-400. http://dx.doi.org/10.1007/BF02980703

Rajesh, Sharma G.L., 2002. Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80, 193-197. http://dx.doi.org/10.1016/S0378-8741(02)00036-3

Riaz T., Khan S.N., Javaid A., 2007. Effects of incorporation of allelopathic plants leaf residues on mycorrhizal colonization and Gladiolus diseases. Allelopathy J 20, 61-70.

Riaz T., Khan S.N., Javaid A., 2010. Management of Fusarium corm rot of gladiolus (Gladiolus grandiflorus sect. Blandus cv. Aarti) by using leaves of allelopathic plants. Afr J Biotechnol 8, 4681-4686.

Smith R.S.J., Krugman S.L., 1967. Control of the charcoal root disease of white fir by fall soil fumigation. Plant Dis Rep 51, 671-674.

Watanabe T., 2002. Practical atlas of soil and seed fungi, 2nd ed. CRC Press, Washington DC, USA. http://dx.doi.org/10.1201/9781420040821

Wyllie T.D., 1993. Charcoal rot. In: Compendium of soybean diseases (Sinclair J.B., Backman P.A., eds), 3rd ed. APS Press, St Paul, MN, USA. pp. 30-33.

How to Cite
HoseiniS., & PourmirzaA. A. (1). Short communication. Evaluation of the efficiency of imidacloprid and Encarsia inaron Walker (Hymenoptera: Aphelinidae) integration to control the whitefly, Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), under greenhouse conditions. Spanish Journal of Agricultural Research, 9(3), 906-911. https://doi.org/10.5424/sjar/20110903-424-10
Section
Plant protection