Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region

  • A. R. Vaezi Department of Soil Science. Agriculture Faculty. Zanjan University. Zanjan. 45371-38111. Iran
  • S. H. R. Sadeghi Department of Watershed Management. College of Natural Resources and Marine Sciences. Tarbiat Modares University. Noor. 46417-76489. Iran
Keywords: aggregate stability, permeability, soil loss, unit plot


Soil erodibility is one of six factors in the revised universal soil loss equation (RUSLE) that reflects the ease with which the soil is detached by splash during rainfall and/or by surface flow. This study was therefore carried out to assess applicability of the RUSLE model in estimating erodibility factor (K) and develop an appropriate equation to predict this factor in soils of the semi-arid region in Iran. Thirty six dry-farming lands were considered in a 900 km2 agricultural zone in Hashtroud, northwest of the country. Soil loss was measured at 108 unit plots under natural rainfall events for a 2-year period from March 2005 to March 2007. The K-factor was estimated using the mean geometric diameter of soil particles (Dg) and measured based on the mean annual soil loss per unit rainfall-runoff erosivity factor (R). Based on the results, the estimated K values varied from 0.0316 and 0.0485 t h MJ–1 mm–1 and the measured K values were ranged from 0.0014 to 0.0050 t h MJ–1 mm–1. The measured K values were almost 14 fold smaller than the estimated values on average. There was no considerable correlation between the measured K-factor and Dg (R2 = 0.05). Multi-regression analysis showed that the measured K-factor was significantly related to the aggregate stability and permeability (R2= 0.90, p < 0.001). Although Dg was positively correlated with the soil permeability (R2 = 0.42), it did not strongly affect the measured K-factor (R2 = 0.05) because of its negative effect on aggregate stability (R2 = 0.64)


Download data is not yet available.


Al-Ani A.N., Dudas M.J., 1988. Influence of calcium carbonate on mean weight diameter of soil. Soil Till Res 11, 19-26. http://dx.doi.org/10.1016/0167-1987(88)90028-1

Angers D.A., Mehuys G.R., 1993. Aggregate stability to water. In: Soil sampling and methods of analysis (Cartner M.R., ed). Can Soc Soil Sci, Lewis Publ, Boca Raton, Canada. pp. 651-657.

Angima S.D., Stott D.E., O'neill M.K., Weesies G.A., 2003. Soil erosion prediction using RUSLE for central Kenya highland conditions. Agr Ecosyst Environ 97, 295-308. http://dx.doi.org/10.1016/S0167-8809(03)00011-2

Barthès B., Roose E., 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion;validation at several levels. Catena 47, 133-149. http://dx.doi.org/10.1016/S0341-8162(01)00180-1

Bouwer H., 1986. Intake rate: cylinder infiltrometer. In:Methods of soil analysis, Part 1 (Klutem A., ed). Physical and mineralogical methods, 2nd ed. Agronomy, Soil Science Society of America, Inc, Madison, WI, USA. pp. 341-345.

Brown L.C., Foster G.R., 1987. Storm erosivity using idealized intensity distributions. T ASAE 30, 379-386.

Cantón Y., Solé-Benet A., Asensio C., Chamizo S., Puigdefábregas J., 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena 77, 192-199. http://dx.doi.org/10.1016/j.catena.2008.12.011

Casalí J., Giménez R., De Santisteban L., Álvarez-Mozos J., Mena J., Del Valle De Lersundi J., 2009. Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. Catena 78, 12-19. http://dx.doi.org/10.1016/j.catena.2009.02.015

De-Moreno M., Heras L., 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma 149, 249-256. http://dx.doi.org/10.1016/j.geoderma.2008.12.003

Foster G.R., 1982. Soil erosion prediction and control. Soil and Water Conservation Society, Ankeny, IA, USA. pp. 105-114.

Franzluebbers A.J., 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till Res 66, 197-205. http://dx.doi.org/10.1016/S0167-1987(02)00027-2

Gee G.W., Bauder J.W., 1980. Particle-size analysis. In:Methods of soil analysis, Part 1 (Klutem A., ed). Physical and mineralogical methods, 2nd ed. Agronomy, Soil Science Society of America, Inc., Madison, WI, USA. pp. 383-385.

Goh T.B., Arnaud R.J.St., Mermut A.R., 1993. Aggregate stability to water. In: Soil sampling and methods of analysis (Cartner M.R., ed). Canadian Society of Soil Science. Lewis Publ, Boca Raton, Canada. pp. 177-180.

Hakimi A., 1986. The briefly study of soil science in Hashtroud. Soil and Water Research Institute, Agriculture Ministry, Iran, Research Report 767, 2-15. [In Persian].

Hoyos N., 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena 63, 85-108. http://dx.doi.org/10.1016/j.catena.2005.05.012

Hussein M.H., Kariem T.H., Othman A.K., 2007. Predicting soil erodibility in northern Iraq natural runoff data. Soil Till Res 94, 220-228. http://dx.doi.org/10.1016/j.still.2006.07.012

ITC, 2001. Ilwis 3.0 for Windows: user's guide. International Institute for Geo-Information Science and Earth Observation, Enschede. 530 pp.

Khaksarfard M., 1995. Water wastes and decreasing methods. Water and Waste Water Journal 9, 25-29. [In Persian].

Kim M.K., Flanagan D.C., Frankenberger J.R., Meyer C.R., 2009. Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP. J Soil Water Conserv 64(2), 154-162. http://dx.doi.org/10.2489/jswc.64.2.154

Knudsen D., Peterson G.A., Pratt P.F., 1982. Lithium, sodium and potassium. In: Methods of soil analysis:Part 2 (Page A.L. et al., eds). Chemical and microbiological properties. ASA Monograph Number 9. pp. 225-246.

Le Bissonnais Y., 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci 47, 425-437. http://dx.doi.org/10.1111/j.1365-2389.1996.tb01843.x

Loch R.J., Pocknee C., 1995. Effects of aggregation on soil erodibility: Australian experience. J Soil Water Conserv 50, 504-506.

Misra R.K., Teixeira P.C., 2001. The sensitivity of erosion and erodibility of forest soils to structure and strength. Soil Till Res 59(1-2), 81-93. http://dx.doi.org/10.1016/S0167-1987(01)00155-6

Montgomery D.R., 2007. Soil erosion and agricultural sustainability. Proc Nat Acad Sci USA 104, 13268-13272. http://dx.doi.org/10.1073/pnas.0611508104 PMid:17686990 PMCid:1948917

Nelson D.W., Sommer L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis, 2nd ed (Page A.L. et al., eds). ASA Monogr 9(2). Amer Soc Agron Madison, WI. pp. 539-579.

Renard K.G., Foster G.R., 1983. Soil conservation–Principles of erosion by water. In: Dryland agriculture (Dregne H.E., Willis W.O., eds). Am Soc Agron, Am Soil Sci Soc, Madison, WI, USA. pp. 155-176.

Renard K.G., Freidmund J.R., 1994. Using monthly precipitation data to estimate the R-factor in the RUSLE. J Hydrol 157, 287-306. http://dx.doi.org/10.1016/0022-1694(94)90110-4

Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991. RUSLE. Revised universal soil loss equation. J Soil Water Conserv 46, 30-33.

Renard K.G., Foster G.R., Weesies G.A., Mccool D.K., Yoder D.C., 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA Agriculture Handbook No. 703, 404 pp.

Rodríguez R.A., Arbelo C.D., Guerra J. A., Natario M.J.S., Armas C.M., 2006. Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena 66, 228-235. http://dx.doi.org/10.1016/j.catena.2006.02.001

Römkens M.J.M., Roth C.B., Nelson D.W., 1977. Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Sci Soc Am J 41, 954-960 http://dx.doi.org/10.2136/sssaj1977.03615995004100050030x

Shamshad A., Azhari M.N., Isa M.H., Wan Hussin W.M.A., Parida B.P., 2008. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena 72, 423-432. http://dx.doi.org/10.1016/j.catena.2007.08.002

Skidmore E.L., Layton J.B., 1992. Dry-soil aggregate stability as influenced by selected soil properties. Soil Sci Soc Am J 56, 557-561. http://dx.doi.org/10.2136/sssaj1992.03615995005600020034x

SSEW, 1982. Soil survey laboratory methods. Technical Monographs No. 6. Harpenden, UK.

Tejada M., González J.L., 2006. The relationship between erodibility and erosion in a soil treated with two amendments. Soil Till Res 91, 186-198. http://dx.doi.org/10.1016/j.still.2005.12.003

Torri D., Poesen J., Borselli L., 1997. Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena 31, 1-22. http://dx.doi.org/10.1016/S0341-8162(97)00036-2

Toy T.J., Foster G.R., Renard K.G., 1999. RUSLE for mining, construction and reclamation lands J. Soil Water Conserv 54, 462-467.

USDA-ARS, 2001. Revised universal soil loss equation. USDA-ARS Handbook No. 703, vers 1.06b [on-line]. Available in http://msa.ars.usda.gov/ms/oxford/nsl/rusle/index.html.

Vaezi A.R., Sadeghi S.H.R., Bahrami H.A., Mahdian M.H., 2008. Spatial variations of runoff in a part of calcareous soils of semi-arid region in North West of Iran. J Agr Sci Nat Resour 15, 213-225.

Wang G., Gertner G., Liu X., Anderson A., 2001. Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. Catena 46, 1-14. http://dx.doi.org/10.1016/S0341-8162(01)00158-8

Wischmeier W.H., Mannering J.V., 1969. Relation of soil properties to its erodibility. Soil Sci Soc Am Proc 33, 131-4. http://dx.doi.org/10.2136/sssaj1969.03615995003300010035x

Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No. 537. USDA, Washington DC. pp. 13-27.

Yu D.S., Shi X.Z., Weindorf D.C., 2006. Relationship between permeability and erodibility of cultivated Acrisols and Cambisols in subtropical China. Pedosphere 16, 304-311. http://dx.doi.org/10.1016/S1002-0160(06)60056-8

Zehetner F., Miller W.P., 2006. Erodibility and runoffinfiltration characteristics of volcanic ash soils along an altitudinal climosequence in the Ecuadorian Andes. Catena 65, 201-213. http://dx.doi.org/10.1016/j.catena.2005.10.003

Zhang K.L., Shu A.P., Xu X.L., Yang Q.K., Yu B., 2008. Soil erodibility and its estimation for agricultural soils in China. J Arid Environ72, 1002-1011. http://dx.doi.org/10.1016/j.jaridenv.2007.11.018

How to Cite
VaeziA. R., & SadeghiS. H. R. (1). Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region. Spanish Journal of Agricultural Research, 9(3), 912-923. https://doi.org/10.5424/sjar/20110903-229-10
Soil science