Compost versus vermicompost as substrate constituents for rooting shrub cuttings

  • F. Fornes Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, P.O. Box 22012, E46071 Valencia
  • D. Mendoza-Hernandez Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, P.O. Box 22012, E46071 Valencia
  • R. M. Belda Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, P.O. Box 22012, E46071 Valencia
Keywords: composting, crop waste reclamation, rooting media, vegetative plant propagation, vermicomposting

Abstract

The feasibility of composted (C), composted plus vermicomposted (V1) and straight vermicomposted (V2) tomato crop waste as component of rooting media for Euonymus japonicus ‘Microphylla’ and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF) at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v) were assayed. Physical, physico chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC) was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO42– and Na+ in this material. EC and the ions contributing to it (K+, SO42–, Na+) showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5%) performed worse than vermicomposts V1 (av. rooting = 97%) and V2 (av. rooting = 98%) whilst the latter performed similarly to CF control (av. rooting = 100%). Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent.

Downloads

Download data is not yet available.

References



Abad M, Fornes F, Carrión C, Noguera V, Noguera P, Maquieira A, Puchades R, 2005. Physical properties of various coconut coir dusts compared to peat. HortScience 40: 2138-2144. 

Ansorena J, 1994. Sustratos: propiedades y caracterización. Ed Mundi¬¬-Prensa, Madrid. pp: 105-135.

 

Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD, 2008. Influences of vermicomposts produced by earthworms and microorganisms from cattle manure, food waste and paper waste on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39: 91-99.
http://dx.doi.org/10.1016/j.apsoil.2007.11.010 

Atiyeh RM, Domínguez J, Subler S, Edwards A, 2000. Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 44: 709-724.
http://dx.doi.org/10.1078/S0031-4056(04)70084-0 

Bachman GR, Metzger JD, 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresource Technol 99: 3155-3161.
http://dx.doi.org/10.1016/j.biortech.2007.05.069
PMid:17689243  

Bunt AC, 1988. Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants, 2nd ed. Unwin Hyman, London.
http://dx.doi.org/10.1007/978-94-011-7904-1 

Carmona E, Abad M, 2007. Aplicación del compost en viveros y semilleros. In: Compostaje (Moreno J, Moral R, eds). Ed Mundi-Prensa, Madrid. pp. 397-424. 

Carrión C, García-de-la-Fuente R, Fornes F, Puchades R, Abad M, 2008. Acidifying compost from vegetable crop wastes to prepare growing media for containerized crops. Compost Sci Utiliza 16: 20-29. 

Domínguez J, 2004. State of the art and new perspectives on vermicomposting research. In: Earthworm ecology (Edwards CA, ed). 2nd ed. CRC Press, Boca Raton, USA. pp. 401-424.
http://dx.doi.org/10.1201/9781420039719.ch20 

EN 13037, 2011. Determination of pH. Soil improvers and growing media. European Standards. CEN, Brussels.

 

EN 13038, 2011. Determination of electrical conductivity. Soil improvers and growing media. European Standards. CEN, Brussels.

 

EN 13039, 2011. Determination of organic matter content and ash. Soil improvers and growing media. European Standards. CEN, Brussels.

 

EN 13040, 2008. Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density. Soil improvers and growing media. European Standards. CEN, Brussels.

 

EN 13041, 2011. Determination of physical properties. dry bulk density, air volume, water volume, shrinkage value and total pore space. Soil improvers and growing media. European Standards. CEN, Brussels.

 

EN 13652, 2001. Extraction of water soluble nutrients and elements. Soil improvers and growing media. European Standards. CEN, Brussels.

 

FEPEX, 2011. Federación Espa-ola de Asociaciones de Productores y Exportadores de Frutas, Hortalizas, Flores y Plantas Vivas. Available in http://www.fepex.es/archivos/publico/ESTADISTICAS/ADUANAS/FLORES/EXPORT/FP_EPRODPAIEUROS.xls. [July 2012].

 

Fornes F, Belda RM, Carrión C, Noguera V, García-Agustín P, Abad M, 2007. Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Sci Hortic 113: 52-59.
http://dx.doi.org/10.1016/j.scienta.2007.01.008 

Fornes F, Carrión C, García-de-la-Fuente R, Puchades R, Abad M, 2010. Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. J Environ Manag 91: 1747-1755.
http://dx.doi.org/10.1016/j.jenvman.2010.03.017
PMid:20456858  

Fornes F, Mendoza-Hernández D, García-de-la-Fuente R, Abad M, Belda RM, 2012. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour Technol 118: 296-305.
http://dx.doi.org/10.1016/j.biortech.2012.05.028
PMid:22705537  

González M, Gómez E, Comese R, Quesada M, Conti M, 2010. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresour Technol 101: 8897-8901.
http://dx.doi.org/10.1016/j.biortech.2010.06.095
PMid:20630748  

Guérin V, Lamaire F, Marfà O, Cáceres R, Giuffrida F, 2001. Growth of Viburnum tinus in peat based and peat substitute growing media. Sci Hortic 89: 129-142.
http://dx.doi.org/10.1016/S0304-4238(00)00228-4 

Hartmann HT, Kester DE, Davies Jr FT, Geneve RL (ed), 2010. Plant propagation: principles and practices. 8th ed. Prentice Hall, New Jersey, USA. pp. 363-365. 

Iglesias Díaz MI, Lamosa S, Rodil C, Díaz Rodríguez F, 2009. Root development of Thuja plicata in peat substitute rooting media. Sci Hortic 122: 102-108.
http://dx.doi.org/10.1016/j.scienta.2009.04.005 

Kulcu R, Yaldiz O, 2004. Determination of aeration rate and kinetics of composting some agricultural wastes. Bioresour Technol 93: 49-57.
http://dx.doi.org/10.1016/j.biortech.2003.10.007
PMid:14987720  

Lazcano C, Gómez-Brandón M, Domínguez J, 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72: 1013-1019.
http://dx.doi.org/10.1016/j.chemosphere.2008.04.016
PMid:18511100  

Li Q, Chen J, Russell D, Caldwell D, Deng M, 2009. Cowpeat as a substitute for peat in container substrates for foliage plant propagation. HortTechnology 19: 340-345. 

MAGRAMA, 2010. Anuario de estadística agroalimentaria. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid. [In Spanish]. 

Maronek DM, Studebaker D, Oberly B, 1985. Improving media aeration in liner and container production. Comb Proc Int Plant Prop Soc 35: 591-597. 

Masaguer A, Benito M, 2007. Evaluación de la calidad del compost. In: Compostaje (Moreno J, Moral R, eds). Ed. Mundi-Prensa, Madrid. pp. 285-304. 

Matysiak B, Nowak J, 2008. Coir substrates for rooting of ornamental ericaceous plants. Propagation Ornamental Plants 8: 76-80. 

Mazuela P, Salas MC, Urrestarazu M, 2005. Vegetable waste compost as substrate for melon. Commun Soil Sci Plant Analysis 36: 1557-1572.
http://dx.doi.org/10.1081/CSS-200059054 

Mills HA, Jones Jr JB, 1996. Plant analysis handbook II. A practical sampling, preparation, analysis, and interpretation guide. MicroMacro Publishing, Athens, USA. 

Ndegwa PM, Thompson SA, 2001. Integrating composting and vermicomposting in the bioconversion of biosolids. Bioresour Technol 76: 107-112.
http://dx.doi.org/10.1016/S0960-8524(00)00104-8 

Nogales R, Domínguez J, Mato S, 2007. Vermicompostaje. In: Compostaje (Moreno J, Moral R, eds). Ed. Mundi-Prensa, Madrid. pp: 187-207. 

Noguera P, Abad M, Puchades R, Noguera V, Ma¬quieira A, Martinez J, 1997. Physical and chemi¬cal properties of coir waste and their relation to plant growth. Acta Hortic 450: 365-369. 

Puchades R, Maquieira A, Rubio JL, Primo-Yúfera E, 1985. Evolución del nitrógeno nítrico y amoniacal en un suelo de cítricos fertilizado con urea recubierta de azufre. Relación con el nitrógeno foliar. Agrochimica XXIX: 30-39. 

Stoven J, Kooima H, 1999. Coconut-coir based media versus peat-based media for propagation of woody ornamentals. Comb Pro In Plant Prop Soc 49: 373-374. 

Tognetti FL, Mazzarino MJ, Hernández MT, 2005. Composting vs. vermicomposting: a comparison of end product quality. Compost Sci Utiliza 13: 6-13. 

Verdonck O, De Vleeschauwer D, Penninck R, 1983. Cocofibre dust a new growing medium for plants in the tropics. Acta Hortic 133: 215-220. 

Published
2013-04-17
How to Cite
FornesF., Mendoza-HernandezD., & BeldaR. M. (2013). Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish Journal of Agricultural Research, 11(2), 518-528. https://doi.org/10.5424/sjar/2013112-3304
Section
Soil science