Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado

  • A. Loss Dept. Engenharia Rural, Universidade Federal de Santa Catarina, Itacorubi, Florianópolis, SC, 88034000
  • M. G. Pereira Instituto de Agronomia, UFRRJ, Seropédica, RJ, 2389000
  • A. Perin Instituto Federal de Educação, Ciência e Tecnologia, Campus Rio Verde, Rod. Sul Goiana, km 01, Zona Rural, Rio Verde, GO, 75901-970
  • S. J. Beutler CPGA-CS, UFRRJ, BR 465, km 7, Seropédica, RJ, 23890-000.
  • L. H. C. dos Anjos Instituto de Agronomia, UFRRJ, Seropédica, RJ, 2389000
Keywords: labile and resistant fractions, humic and fulvic acids, carbon stocks, no-tillage system, crop-livestock integration system


The crop-livestock integration system significantly increases the carbon content in chemical fractions of soil organic matter (SOM). This study aimed to evaluate chemical indicators of SOM attributes for sites under brachiaria/livestock and pearl millet/no livestock in Goias, Brazil. A third area covered with natural Cerrado vegetation (Cerradão) served as reference. Soil was randomly sampled at 0-5, 5-10, 10-20 and 20-40 cm. Total organic carbon stocks (TOC), oxidizable carbon fractions (OCF) (F1>F2>F3>F4), carbon content in the humin (C-HUM), humic acid (C-HAF) and fulvic acid (C-FAF) fractions were evaluated. F1/F4, F1+F2/F3+F4, C-HAF/C-FAF and (C-HAF+C-FAF)/C-HUM indices were calculated, as well as stocks chemical SOM fractions. Brachiaria/livestock produced greater TOC stocks than pearl millet/no livestock (0-5, 5-10 and 10-20 cm). In terms of OCF, brachiaria/livestock generally exhibited higher levels in F1, F2, F4 and F1/F4 than pearl millet/no livestock. C-HUM (0-10 cm) and C-HAF (0-20 cm) stocks were larger in brachiaria/livestock than pearl millet/no livestock. Compared to the Cerradão, brachiaria/livestock locations displayed higher values for TOC (5-10 and 10-20 cm), C-HAF and C-HAF/C-FAF (5-10 cm) stocks. TOC, C-HAF stock and OCF show that land management with brachiaria/livestock was more efficient in increasing SOM than pearl millet/no livestock. Moreover, when compared with pearl millet/no livestock, brachiaria/livestock provided a more balanced distribution of very labile (F1) and recalcitrant (F4) carbon throughout soil layers, greater SOM humification. Brachiaria/livestock leads to higher values of F1 and F4 in depth when compared to pearl millet/livestock and provides a more homogeneous distribution of C-FAF and C-HAF in depth compared to Cerradão.


Download data is not yet available.


Balbinot Jr AA, Moraes A, Veiga M, Pelissari A, Dieckow J, 2009. Integração lavoura-pecuária: intensificação de uso de áreas agrícolas. Cienc Rural 39: 1925-1933.

Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC, Fontes AG, Polidoro JC, Moço MK, Rebouca RC, Baligar VC, 2011. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agrofor Syst 81: 213-220.

Benites VM, Madari B, Machado PLOA, 2003. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Comunicado Técnico 16. Embrapa Solos, Rio de Janeiro. 

Benites VM, Moutta RO, Coutinho HLC, Balieiro FC, 2010. Discriminant analysis of soils under different land uses in the atlantic rain forest area using organic matter attributes. Rev Árvore 34: 685-690.

Blair GJ, Lefroy RDB, Lisle L, 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agr Res 46: 1459-1466.

Blanchart E, Bernoux M, Sarda X, Siqueira-Neto M, Cerri CC, Piccolo MC, Douzet J, Scopel E, Feller C, 2007. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric Conspec Sci 72: 81-87. 

Boddey R, Jantalia CP, Conceição PCE, Zanatta JA, Mielniczuk J, Dieckow J, Santos HP, Denardin JE, Giacomini SJ, Urquiaga SCS, Alves BJR, 2010. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob Change Biol 16: 784-795.

Bolliger A, Magid J, Amado TJ, Skora-Neto F, Ribeiro F, Callegari A, Ralisch R, Neergaard A, 2006. Taking stock of the Brazilian zero-till revolution: A review of landmark research and farmers' practice. Adv Agron 91: 47-110.

Bouajila A, Gallali T, 2010. Land use effect on soil and particulate organic carbon, and aggregate stability in some soils in Tunisia. Afr J Agric Res 5: 764-774. 

Briedis C, Sá JCM, Caires EF, Navarro JF, Inagaki TM, Boer A, Oliveira F, Neto CQ, Canalli LB, Bürkner SJ, 2012a. Changes in organic matter pools and increases in carbon sequestration in response to surface liming in an Oxisol under long-term no-till. Soil Sci Soc Am J 76: 151-160.

Briedis C, Sa JCM, De Carli RS, Antunes EAP, Simon L, Romko ML, Elias LS, Ferreira AO, 2012b. Particulate soil organic carbon and stratification ratio increases in response to crop residue decomposition under no-till. Rev Bras Ci Solo 36: 1483-1490.

Bustamante MMC, Corbeels M, Scopel E, Roscoe R, 2006. Soil carbon storage and sequestration potencial in the Cerrado region of Brazil. In: Carbon sequestration in soils of Latin America (Lal R, Cerri C, Bernoux M, Etchevers J, Cerri E, Eds.). The Haworth, NY, pp: 285-304. 

Canellas LP, Velloso ACX, Marciano CR, Ramalho JFGP, Rumjanek VM, Rezende CE, Santos GA, 2003. Chemical soil properties of an Inceptisol under long-term sugarcane crops with vinasse application and without slash burning. Rev Bras Ci Solo 27: 935-944.

Carvalho JLN, Raucci GS, Cerri CEP, Bernoux M, Feigl BJ, Wruck FJ, Cerri CC, 2010. Impact of pasture; agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Till Res 110: 175-186.

Chan KY, Bowman A, Oates A, 2001. Oxidizidable organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture ley. Soil Sci 166: 61-67.

Ciampitti IA, García FO, Picone LI, Rubio G, 2011. Soil carbon and phosphorus pools in field crop rotations in pampean soils of Argentina. Soil Sci Soc Am J 75: 616-625.

Correa MM, Ker JC, Mendonca ES, Ruiz HA, Bastos RS, 2003. Physical, chemical and mineralogical characteristics of soils from the meadow Region of Sousa (PB) Rev Bras Ci Solo 27: 311-324. 

Corsi S, Friedrich T, Kassan A, Pisante M, Sá JCM, 2012. Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: A literature review. FAO, Roma. 89 pp. 

Culman SW, Snapp SS, Freeman MA, Schipanski ME, Beniston J, Lal R, Drinkwater RE, Franzluebbers AJ, Glover JD, Grandy AS et al., 2012. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci Soc Am J 76: 494-504.

Ellert BH, Bettany JR, 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75: 529-538.

EMBRAPA, 1997. Manual de métodos de análise de solo, 2nd ed. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro, 212 pp. 

EMBRAPA, 2006. Sistema brasileiro de classificação de solos, 2nd ed. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro, 306 pp. 

Fernandes FA, Cerri CC, Fernandes AHBM, 1999. Changes in the soil organic matter by the introduction of pastures cultivated in a hydromorphic podzol in the pantanal. Pesq Agropec Bras 34: 1943-1951.

Fontana A, Loss A, Pereira MG, Cunha TJF, Salton JC, 2006. Fertility properties and humic fractions in a Rhodic Ferralsol in Brazilian Cerrado. Pesq Agropec Bras 41: 847-853.

Foy CD, 1997. Tailoring plants to fit problem soil - progress and problems for future research. In: Plant soil interactions at low pH: sustainable agriculture and forestry production (Moniz AC, Furlani AM, Shaffert R, eds.). Braz Soil Sci Soc, Campinas, São Paulo, pp: 55-57. 

Franchini JC, Hoffmann-Campo CB, Torres E, Miyazawa M, Pavan A, 2003. Organic composition of green manure during growth and its effect on cation mobilization in an acid Oxisol. Commun Soil Sci Plant Anal 34: 2045-2058.

Jantalia CP, Resck DVS, Alves BJR, Zotarelli L, Urquiaga S, Boddey RM, 2007. Tillage effect on C stocks of a clayey oxisol under a soybean-based crop rotation in the Brazilian Cerrado. Soil Till Res 95: 97-109.

Klink C, Cavalcanti RB, DeFries R (eds), 2008. Cerrado land use and conservation: balancing human and ecological needs. Cent Appl Biodivers Sci, Washington, DC. 158 pp. 

Kolář L, Kužel S, Horáček J, Čechová V, Borová-Batt J, Peterka J, 2009. Labile fractions of soil organic matter, their quantityand quality. Plant Soil Environ 55: 245-251. 

Lilienfein J, Wilcke DW, 2003. Element storage in native agri and silvicultural ecosystems of the Brazilian savanna. I. Biomass, carbon, nitrogen, phosphorus and sulfur. Plant Soil 254: 425-442.

Loss A, Pereira MG, Ferreira EP, Santos LL, Beutler SJ, Ferraz-Junior ASL, 2009. Oxidizable organic carbon fractions of an ultisol under an alley cropping system. Rev Bras Ci Solo 33: 867-874. 

Loss A, Pereira MG, Schultz N, Anjos LHC, Silva EMR, 2010. Carbon quantification of humic substances in different soil use systems and evaluation periods. Bragantia 69: 913-922.
http://dx.doi.org/10.1590/S0006-87052010000400018 Loss A, Pereira MG, Anjos LHC, Giacomo SG, Perin A, 2011a. Aggregation, carbon and nitrogen in soil aggregates under no-tillage with crop-livestock integration Pesq Agropec Bras 46: 658-767. 

Loss A, Pereira MG, Anjos LHC, Beutler SJ, Ferreira EP, Silva EMR, 2011b. Oxidizable organic carbon fractions and soil aggregation in areas under different organic production systems in Rio de Janeiro, Brazil. Trop Subtrop Agroecosyst 14: 699-708. 

Loss A, Pereira MG, Perin A, Anjos LHC, 2012a. Carbon and nitrogen content and stock in no-tillage and crop-livestock integration systems in the Cerrado of Goias State, Brazil. J Agric Sci 4: 96-105. 

Loss A, Pereira MG, Perin A, Beutler SJ, Anjos LHC, 2012b. Carbon; nitrogen and natural abundance of 13C and 15N of light-fraction organic matter under no-tillage and crop-livestock integration systems. Acta Sci Agron 34: 465-472.

Loss A, Pereira MG, Perin A, Beutler SJ, Anjos LHC, 2012c. Densidade e fertilidade do solo sob sistemas plantio direto e integração lavoura-pecuária no Cerrado. Rev Ci Agrárias 55: 260-268.

Machado PLOA, Gerzabek M, 1993. Tillage and crop rotation interactions on humic substances of a typic haplorthox from southern Brazil. Soil Till Res 26: 227-236.

Maia SMF, Xavier FAS, Senna OT, Mendonca ES, Araujo JA, 2007. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agrofor Syst 71: 127-138.

Majumder B, Mandal B, Bandyopadhyay PK, Gangopadhyay A, Mani PK, Kundu AL, Mazumdar D, 2008. Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci Soc Am J 72: 775-785.

Marchão R, Becquer T, Brunet D, Balbino L, Vilela L, Brossard M, 2009. Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop livestock management systems. Soil Till Res 103: 442-450.

Mirsky SB, Lonyon LE, Needel BA, 2008. Evaluating soil management using particulate and chemical labile organic matter fractions. Soil Sci Soc Am J 72: 180-185.

Nadi M, Sedaghati E, Fuleky G, 2012. Evaluation of humus quality of forest soils with two extraction methods. IJFSE 2: 124-127. 

Oades JM, 1988. The retention of soil organic matter in soils. Biogeochemistry 5: 35-70.

Oliveira-Junior AC, Silva CA, Curi N, Guilherme LRG, Rangel OJP, 2008. Chemical indicators of the quality of organic matter of soil from the Rio das Mortes watershed under different coffee plant managements. Quim Nova 31: 1733-1737. 

Parihar CM, Rana KS, Jat ML, Jat SLM, Parihar D, Kantwa SR, Singh DK, Sharma S, 2012. Carbon footprint and economic sustainability of pearl millet-mustard system under different tillage and nutrient management practices in moisture stress conditions. Afr J Microbiol Res 6: 5052-5061.

Pereira MG, Loss A, Beutler SJ, Torres JLR, 2012. Granulometric and humic fractions carbon stocks of soil organic matter under no-tillage system in Uberaba, Brazil. Trop Subtrop Agroecosyst 15: 1-13. 

Rangel OJP, Silva CA, Guimarães PTG, Guilherme LRG, 2008. Oxidizible organic carbon fractions in a latosol cultivated with coffee at different planting spacings. Ci Agrotec 32: 429-437.
http://dx.doi.org/10.1590/S1413-70542008000200013 Ribeiro JF, Walter BMT, 1998. Fitofisionomias do bioma cerrado. In: Cerrado: ambiente e flora (Sano SM, Almeida SP, eds.). EMBRAPA-CPAC, Planaltina, pp: 89-166. Rodríguez Pacheco A, De Queiroz Chavez R, Lana Nicoli CM, 2012. Integration of crops, livestock, and forestry: A system of production for the Brazilian Cerrados. In: Eco-efficiency: from vision to reality (Hershey CH, ed.). Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 11 pp. 

Rossi CQ, Pereira MG, Giacomo SG, Betta M, Polidoro JC, 2011. Humic fractions of organic matter in soil cultivated with soybean on straw of brachiaria and sorghum. Bragantia 70: 501-510. 

Sá JCM, Lal R, Dick WA, Piccolo MC, Feigl BE, 2009. Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil Till Res 104: 56-64.

Sano EE, Barcellos AE, Bezerra HS, 2006. Assessing the spatial distribution of cultivated pastures in the Brazilian savannas. Pasturas Trop 22: 2-15. 

Sano EE, Ferreira LG, Asner GP, Steinke ET, 2007. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int J Remote Sens 28: 2739-2752.

Silva JE, Resck DVS, Corazza EJ, Vivaldi L, 2004a. Carbon storage in clayey Oxisols cultivated pastures in the Cerrado region Brazil. Agric Ecosyst Environ 103: 357-363.

Silva LS, Camargo FAO, Cerreta CA, 2004b. Composição da fase sólida orgânica do solo In: Fundamentos de química do solo (Meurer EJ, ed.). Porto Alegre: Genesis, pp: 73-99. 

Siqueira Neto M, Piccolo MC, Scopel E, Costa Jr C, Cerri CC, Bernoux M, 2009. Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. Acta Sci Agron 31: 709-717. 

Siqueira Neto M, Scopel E, Corbeels M, Cardoso A, Douzet J, Feller C, Piccolo MC, Cerri CC, Bernoux M, 2010. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil Till Res 110: 187-195.

Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM, 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76: 39-58.

Slepetiene A, Slepetys J, 2005. Status of humus in soil under various long-term tillage systems. Geoderma 127: 207-215.

Soil Survey Staff, 2010. Keys to soil taxonomy, 11th ed. USDA-NRCS, Washington DC, USA. 338 pp. 

Souza ED, Carneiro MAC, Paulino HB, Silva CA, Buzett, S, 2010. Soil aggregation in a crop-livestock integration system under no-tillage. Rev Bras Ci Solo 34: 1365-1374.

Stevenson FJ, 1994. Humus chemistry: genesis; composition; reactions. John Wiley and Sons, NY. 512 pp. 

Swift RS, 1996. Organic matter characterization. In: Methods of soil analysis (Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, eds.) Soil Sci Soc Am and Am Soc Agron, Madison. pp: 1011-1020. 

Tirloni C, Vitorino ACT, Bergamin AC, Souza LCF, 2012. Physical properties and particle-size fractions of soil organic matter in crop-livestock integration. Rev Bras Ci Solo 36: 1299-1310.

Vergnoux A, Guiliano M, Di Rocco R, Domeizel M, Théraulaz F, Doumenq P, 2011. Quantitative and mid-infrared changes of humic substances from burned soils. Environ Res 111: 205-214.

Yeomans JC, Bremner JM, 1988. A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19: 1467-1476.

Zinn YL, Lal R, Resck DVS, 2011. Eucalypt plantation effects on organic carbon and aggregation of three different-textured soils in Brazil. Soil Res 49: 614-624.

How to Cite
LossA., PereiraM. G., PerinA., BeutlerS. J., & AnjosL. H. C. dos. (2013). Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado. Spanish Journal of Agricultural Research, 11(1), 217-231. https://doi.org/10.5424/sjar/2013111-3416
Soil science