Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench)

  • A. E. Pradas-del-Real Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
  • P. García-Gonzalo Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
  • R. Alarcón Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
  • A. González-Rodríguez Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
  • M. C. Lobo Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
  • A. Pérez-Sanz Dpto. de Investigación Agroambiental. IMIDRA, Finca “El Encín”, Alcalá de Henares, Madrid
Keywords: bladder campion, metal pollution, metal speciation, tolerance, nutrient balance


Chromium released into the environment from industrial activities has become an important environmental concern. Silene vulgaris has been proven to be tolerant to many heavy metals, so it is considered an interesting species in the revegetation and restoration of polluted soils, but no information is available about its response to Cr. The objective of this work was to study uptake and influence on plant growth of Cr(III) and Cr(VI) in six genotypes (four hermaphrodites and two females) of S. vulgaris from different sites of Madrid (Spain). Plants were treated for 12 days with 60 µM of Cr(III) or Cr(VI) in semihydroponics. Dry weights, soil-plant analysis development values (SPAD) reading with chlorophylls and micronutrient and total Cr concentrations were determined. Metal uptake was higher in presence of Cr(VI) than of Cr(III) and poorly translocated to the shoots. In both cases S. vulgaris did not show visual toxicity symptoms, biomass reduction, or differences among SPAD values as consequence of Cr additions. However genotypes SV36 and SV38 showed Fe and Mn imbalance. This is the first report on the relatively good performance of hermaphrodite and female S. vulgaris genotypes in Cr uptake and physiological traits, but further studies will be necessary to elucidate the mechanisms by which the gender may influence these variables. S. vulgaris presented high diversity at genotypic level; the treatment with hexavalent Cr increased the differences among genotypes so the use of cuttings from an homogeneous genotype seems to be an adequate method for the study of this species.


Download data is not yet available.


Alarcón R, Pérez Sanz A, Lobo MC, García P, 2008. Estudio de la variabilidad genética en poblaciones de Silene vulgaris (Moench) Garcke, mediante marcadores SSR. Actas Horticultura 51: 109-110.

Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG, 2003. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): Chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37: 1859-1864. http://dx.doi.org/10.1021/es0208916 PMid:12775058

Arduini I, Masoni A, Ercoli L, 2006. Effects of high chromium applications on miscanthus during the period of maximum growth. Environ Exp Bot 58: 234-243. http://dx.doi.org/10.1016/j.envexpbot.2005.09.004

Barnhart J, 1997. Occurrences, uses and properties of chromium. Regul Toxicol Pharm 26: 3-7. http://dx.doi.org/10.1006/rtph.1997.1132 PMid:9380835

Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J, 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55: 141-146. http://dx.doi.org/10.1016/j.chemosphere.2003.11.015 PMid:14720557

Bielicka A, Bojanowska I, Wisniewski A, 2005. Two faces of chromium-pollutant and bioelement. Pol J Environ Stud 14: 5-10.

Caruso C, Maherali H, Jackson R, 2003. Gender-specific floral and physiological traits: implications for the maintenance of females in gynodioecious Lobelia siphilitica. Oecologia 135: 524-531. PMid:16228251

Charlesworth D, Laporte V, 1998. The male-sterility polymorphism of Silene vulgaris: Analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150: 1267-1282. PMid:9799278 PMCid:PMC1460393

Chatterjee J, Chatterjee C, 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Poll 109: 69-74. http://dx.doi.org/10.1016/S0269-7491(99)00238-9

Ciarkowska K, Hanus-Fajerska E, 2008. Remediation of soil-free grounds contaminated by zinc, lead and cadmium with the use of metallophytes. Pol J Environ Stud 17: 707-712.

De Vos CHR, Schat H, De Waal MAM, Voojs R, Ernst WHO, 1991. Increased resistance to copper induced damage to the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82: 523-528. http://dx.doi.org/10.1034/j.1399-3054.1991.820407.x

Di Toppi LS, Fossati F, Musetti R, Mikerezi I, Favali MA, 2002. Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J Plant Nutr 25: 701-717. http://dx.doi.org/10.1081/PLN-120002953

Diwan H, Ahmad A, Iqbal M, 2008. Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manage 41: 734-741. http://dx.doi.org/10.1007/s00267-007-9020-3 PMid:17882479

Ernst WHO, Nelissen HJM, 2000. Life-cycle phases of a zinc and cadmium resistant ecotype of Silene vulgaris in risk assessment of polymetallic soils. Environ Pollut 107: 329-338. http://dx.doi.org/10.1016/S0269-7491(99)00174-8

Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B, 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresource Technol 92: 229-235. http://dx.doi.org/10.1016/j.biortech.2003.10.002 PMid:14766155

Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez, G, Cano-Aguilera I, 2005. Differential uptake and transport of trivalent and flexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48: 225-232. http://dx.doi.org/10.1007/s00244-003-0162-x PMid:15696348

Gopal R, Rizvi AH, Nautiyal N, 2009. Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32: 1551-1559. http://dx.doi.org/10.1080/01904160903094313

Han FXX, Sridhar BBM, Monts DL, Su Y, 2004. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162: 489-499. http://dx.doi.org/10.1111/j.1469-8137.2004.01027.x

Kotas J, Stasicka Z, 2000. Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107: 263-283. http://dx.doi.org/10.1016/S0269-7491(99)00168-2

Kumar PBAN, Dushenkov V, Motto H, Raskin I, 1995. Phytoextraction - the use of plants to remove heavy-metals from soils. Environ Sci Technol 29: 1232-1238. http://dx.doi.org/10.1021/es00005a014 PMid:22192016

Levina A, Lay PA, 2008. Chemical properties and toxicity of chromium(III) nutritional supplements. Chem Res Toxicol 21: 563-571. http://dx.doi.org/10.1021/tx700385t PMid:18237145

Mallick S, Sinam G, Mishra RK, Sinha S, 2010. Interactive effect of Cr and Fe treatments on plants growth nutrition and oxidative status in Zea mays L. Shekar. Ecotox Environ Safe 73: 987-995. http://dx.doi.org/10.1016/j.ecoenv.2010.03.004 PMid:20363501

Mattina MI, Lannucci-Berger W, Musante C, White JC, 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124: 375-378. http://dx.doi.org/10.1016/S0269-7491(03)00060-5

McGrath SP, 1982. The uptake and translocation of tri-valent and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol 92: 381-390. http://dx.doi.org/10.1111/j.1469-8137.1982.tb03395.x

Mei BJ, Puryear JD, Newton RJ, 2002. Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247: 223-231. http://dx.doi.org/10.1023/A:1021509115343

Nichols PB, Couch JD, Al-Hamdani SH, 2000. Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68: 313-319. http://dx.doi.org/10.1016/S0304-3770(00)00128-5

Olson M, McCauley D, Taylor D, 2005. Genetics and adaptation in structured populations: sex ratio evolution in Silene vulgaris. Genetica 123: 49-62. http://dx.doi.org/10.1007/s10709-003-2709-1 PMid:15881680

Paliouris G, Hutchinson TC, 1991. Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke fron Ontario, Canada. New Phytol 117: 449-459. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00009.x

Pandey N, Sharma CP, 2003. Chromium interference in iron nutrition and water relations of cabbage. Environ Exp Bot 49: 195-200. http://dx.doi.org/10.1016/S0098-8472(02)00088-6

Pezennec E, 2007. Key results of the initial environmental risk assessment for chromium III compund and chromium metal. Innovations in ferro Alloy Industries. Available in http://www.pyrometallurgy.co.za/InfaconXI/045.pdf. [15 November 2011].

Poot P, Pilon J, Pens TL, 1996. Photosynthetic characteristics of leaves of male-sterile and hermaphrodite sex types of Plantago lanceolata grown under conditions of contrasting nitrogen and light availabilities. Physiol Plant 98: 780-790. http://dx.doi.org/10.1111/j.1399-3054.1996.tb06685.x

Prentice HC, Giles BE, 1993. Genetic determination of isozyme variation in the bladder campions, Silene uniflora and S. vulgaris. Hereditas 118: 217-227. http://dx.doi.org/10.1111/j.1601-5223.1993.00217.x

Price CG, Abrahams PW, 1994. Copper tolerance in a population of Silene vulgaris ssp maritima (A-and-D Love) at Dolfrwynog Bog Near Dolgellau, North Wales. Environ Geochem Health 16: 27-30. http://dx.doi.org/10.1007/BF00149590

Qian JH, Zayed A, Zhu YL, Yu M, Terry N, 1999. Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28: 1448-1455. http://dx.doi.org/10.2134/jeq1999.00472425002800050009x

Salt DE, Smith RD, Raskin I, 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643-668. http://dx.doi.org/10.1146/annurev.arplant.49.1.643 PMid:15012249

Samantary S., 2002. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47: 1065-1072. http://dx.doi.org/10.1016/S0045-6535(02)00091-7

Schultz S, 2003. Sexual dimorphism in gynodioecious Sidalcea hirtipes (Malvaceae). I. Seed, fruit, and ecophysiology. Int J Plant Sci 164: 165-173. http://dx.doi.org/10.1086/344550

Shanker AK, Pathmanabhan G, 2004. Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L.) Moench cv CO 27) under Cr(III) and Cr(VI) stress. Plant Soil 265: 141-151. http://dx.doi.org/10.1007/s11104-005-0332-x

Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G, 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166: 1035-1043. http://dx.doi.org/10.1016/j.plantsci.2003.12.015

Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S, 2005. Chromium toxicity in plants. Environ Int 31: 739-753. http://dx.doi.org/10.1016/j.envint.2005.02.003 PMid:15878200

Sharma DC, Chatterjee C, Sharma CP, 1995. Chromium accumulation and its effects on wheat (Triticum aestivum L Cv Hd-2204). Metabolism Plant Sci 111: 145-151. http://dx.doi.org/10.1016/0168-9452(95)04230-R

Sharma DC, Sharma C, Tripathi RD, 2003. Phytotoxic lesions of chromium in maize. Chemosphere 51: 63-68. http://dx.doi.org/10.1016/S0045-6535(01)00325-3

Skeffington RA, Shewry PR, Peterson PJ, 1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L). Planta 132: 209-214. http://dx.doi.org/10.1007/BF00399719

Small E, 1972. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50: 2227-2266. http://dx.doi.org/10.1139/b72-289

Taylor DR, Trimble S, McCauley DE, 1999. Ecological genetics of gynodioecy in Silene vulgaris: relative fitness of females and hermaphrodites during the colonization process. Evolution 53: 745-751. http://dx.doi.org/10.2307/2640714

USEPA, 1992. Method 7196a, chromium hexavalent (Colorimetric). Available in http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7196a.pdf [15 March 2009].

USEPA, 1998. Toxicological review of hexavalent chromium. US Government Printing Office, Washington.

Wierzbicka M, Panufnik D, 1998. The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ Pollut 101: 415-426. http://dx.doi.org/10.1016/S0269-7491(98)00012-8

Zayed A, Lytle CM, Qian JH, Terry N, 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206: 293-299. http://dx.doi.org/10.1007/s004250050403

Zeng F, Qiu B, Ali S, Zhang G, 2010. Genotypic differences in nutrient uptake and accumulation in rice under chromium stress. J Plant Nutr 33: 518-528. http://dx.doi.org/10.1080/01904160903506258

Zhang X, Liu J, Huang H, Chen J, Zhu Y, Wang D, 2007. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67: 1138-1143. http://dx.doi.org/10.1016/j.chemosphere.2006.11.014 PMid:17207838

How to Cite
Pradas-del-RealA. E., García-GonzaloP., AlarcónR., González-RodríguezA., LoboM. C., & Pérez-SanzA. (2013). Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 11(3), 685-694. https://doi.org/10.5424/sjar/2013113-3536
Agricultural environment and ecology