Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

  • Christos Lykas University of Thessaly, School of Agricultural Sciences, Dept. Agriculture Crop Production and Rural Environment. Fytokou St., N. Ionia, GR-38446, Magnisia
  • Ioannis Vagelas Technological Education Institute of Larissa, Dept. Plant Production. 41110 Larissa
  • Nikolaos Gougoulias Technological Education Institute of Larissa, Dept. Plant Production. 41110 Larissa
Keywords: OMW, Tulipa spp., scab-like lesions, malformation, dry mass, biofungicides


The effect of olive mill wastewater (OMW) on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH), fresh mass (FM) and dry mass (DM) of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs.


Download data is not yet available.


Abawi GS, Widmer TL, 2000. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15: 37-47. http://dx.doi.org/10.1016/S0929-1393(00)00070-6

Amaral C, Lucas MS, Coutinho J, Crespí AL, do Rosário MA, Pais C, 2008. Microbiological and physicochemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Bioresour Technol 99: 7215-7223. http://dx.doi.org/10.1016/j.biortech.2007.12.058

Asfi M, Ouzounidou G, Moustakas M, 2012. Evaluation of olive oil mill wastewater toxicity on spinach. Environ Sci Pollut Res 19: 2363-2371. http://dx.doi.org/10.1007/s11356-012-0746-y

Askarne L, Talibi I, Boubaker H, Serghini MA, Boudyach EH, Ait BAA, 2011. Effects of organic acid and salt on the development of Penicillium italicum. The casual agent of citrus blue mold. Plant Pathol J 10 (3): 99-107. http://dx.doi.org/10.3923/ppj.2011.99.107

Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A, 2004. A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34: 209-247. http://dx.doi.org/10.1080/10643380490279932

Benschop M, Van DerValk GGM, 1984. The effect of defoliation on bulb production of tulip cultivar 'Apeldoorn'. Sci Hortic 24: 83-91. http://dx.doi.org/10.1016/0304-4238(84)90011-6

Bonanomi G, Giorgi V, Del Sorbo G, Neri D, Scala F, 2006. Olive mill residues affect saprophytic growth and disease incidence of foliar and soilborne plant fungal pathogens. Agr Ecosyst Environ 115: 194-200. http://dx.doi.org/10.1016/j.agee.2006.01.002

Bonari E, Macchia M, Angelini LG, Ceccarini L, 1993. The waste waters from olive oil extraction: their influence on the germinative characteristics of some cultivated and weed species. Agric Med 123: 273-280.

Brayford D, 1987. CMI Descriptions of pathogenic fungi and bacteria. Sheet no. 921. Mycopathologia, 100: 115-134. http://dx.doi.org/10.1007/BF00467104

Brzezinska MS, Jankiewicz U, 2012. Production of antifungal chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Curr Microbiol 65: 666-672. http://dx.doi.org/10.1007/s00284-012-0208-2

Bus VG, Bongers AJ, Risse LA, 1991. Occurrence of Penicillium digitatum and P. italicum resistant to benomyl, thiabendazole and imazalil on citrus fruit from different geographic origins. Plant Dis 75: 1098-1100. http://dx.doi.org/10.1094/PD-75-1098

Capasso R, Evidente A, Schivo L, Orru G, Marcialis MA, Cristinzio G, 1995. Antibacterial polyphenols from olive oil mill waste waters. J Appl Bacteriol 79: 393-398. http://dx.doi.org/10.1111/j.1365-2672.1995.tb03153.x

Casa R, D'Annibale A, Pieruccetti F, Stazi SR, Sermanni GG, Lo Cascio B, 2003. Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50: 959-966. http://dx.doi.org/10.1016/S0045-6535(02)00707-5

Chung WH, Chung WC, Ting PF, Ru CC, Huang HC, Huang JW, 2009. Nature of resistance to methyl benzimidazole carbamate fungicides in Fusarium oxysporum f.sp. lilii and F. oxysporum f.sp. gladioli in Taiwan. J Phytopathol 157: 742-747. http://dx.doi.org/10.1111/j.1439-0434.2009.01545.x

Coley SJR, Javed UR, 1972. Germination of sclerotia of Botrytis tulipae, the cause of tulip fire. Ann Appl Biol 71: 99-109. http://dx.doi.org/10.1111/j.1744-7348.1972.tb02944.x

Dane F, Dalgiç Ö, 2005. The effects of fungicide benomyl (Benlate) on growth and mitosis in onion (Allium cepa L.) root apical meristem. Acta Biol Hung 56: 119-128. http://dx.doi.org/10.1556/ABiol.56.2005.1-2.12

D'Annibale A, Casa R, Pieruccetti F, Ricci M, Marabottini R, 2004. Lentinula edodes removes phenols from olive mill wastewater: impact on durum wheat (Triticum durum desf.) germinability. Chemosphere 54: 887-894. http://dx.doi.org/10.1016/j.chemosphere.2003.10.010

De Marco E, Savarese M, Paduano A, Sacchi R, 2007. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem 104: 858-867. http://dx.doi.org/10.1016/j.foodchem.2006.10.005

El Hadrami A, Belaqziz M, El Hassni M, Hanifi S, Abbad A, Capasso R, Gianfreda L, El Hadrami I, 2004. Physico-chemical characterization and effects of olive oil mill wastewaters fertirrigation on the growth of some Mediterranean crops. J Agron. 3: 247-254. http://dx.doi.org/10.3923/ja.2004.247.254

El Hassani FZ, Bendriss Amraoui M, Zinedine A, Aissam H, Mdaghri Alaoui S, Merzouki M, Benlemlih M, 2009a. Changes in leaf phenols and other physiological parameters of peppermint in response to olive mill wastewater application. Int J Agric Biol 11: 413-418.

El Hassani FZ, Zinedine A, Bendriss Amraoui M, Errachidi F, Mdaghri Alaoui S, Aissam H, Merzouki M, Benlemlih M, 2009b. Characterization of the harmful effect of olive mill wastewater on spearmint. J Hazard Mater 170: 779-785. http://dx.doi.org/10.1016/j.jhazmat.2009.05.033

El Hassani FZ, Zinedine A, Mdaghri Alaoui S, Merzouki M, Benlemlih M, 2010. Use of olive mill wastewater as an organic amendment for Mentha spicata L. Ind Crop Prod 32: 343-348. http://dx.doi.org/10.1016/j.indcrop.2010.05.010

Fodale AS, Mule R, Bati B, 1999. The antifungal activity of olive oil waste water on isolates of Verticillium dahliae Kleb. in vitro. Acta Hortic 474: 753-756.

García García I, Jiménez Pe-a PR, Bonilla Venceslada JL, Martín Martín A, Martín Santos MA, Ramos Gómez E, 2000. Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem 35: 751-758. http://dx.doi.org/10.1016/S0032-9592(99)00135-1

Gonzales DM, Moreno E, Sarmiento QJ, Cormenzana RA, 1999. Studies on antibacterial activity of wastewaters from olive oil mills (alpechin): Inhibitory activity of phenolic and fatty acids. Chemosphere 20: 423-432. http://dx.doi.org/10.1016/0045-6535(90)90073-3

Greco GJ, Colarieti ML, Toscano G, Iamarino G, Rao MA, Gianfreda L, 2006. Mitigation of olive mill wastewater toxicity. J Agric Food Chem 54: 6776-6782. http://dx.doi.org/10.1021/jf061084j

Hamdi M, 1992. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl Biochem Biotechnol 37: 155-163. http://dx.doi.org/10.1007/BF02921667

Hamdi M, Ellouz R, 1992a. Bubble column fermentation of olive mill wastewaters by Aspergillus niger. J Chem Technol Biotechnol 54: 331-335. http://dx.doi.org/10.1002/jctb.280540405

Hamdi M, Ellouz R, 1992b. Use of Aspergillus niger to improve filtration of olive mill waste-waters. J Chem Technol Biotechnol 53: 195-200. http://dx.doi.org/10.1002/jctb.280530215

Hamdi M, BouHamed H, Ellouz R, 1991a. Optimization of the fermentation of olive mill waste-waters by Aspergillus niger. Appl Microbiol Biotechnol 36: 285-288. http://dx.doi.org/10.1007/BF00164436

Hamdi M, Khadir A, Garcia J, 1991b. The use of Aspergillus niger for the bioconversion of olive mill waste-waters. Appl Microbiol Biotechnol 34: 828-831. http://dx.doi.org/10.1007/BF00169359

Hanks GR, 1984. Factors affecting the response of tulips to gibberellin. Sci Hortic 23: 379-390. http://dx.doi.org/10.1016/0304-4238(84)90035-9

Henderson J S, 1982. The killing of botrytis spores by phenols. Ann Appl Biol 8: 1-79.

Hesse PR, 1972. A textbook of soil chemical analysis. Chemical Pub. Co. Inc., NY. 556 pp.

Hocking PJ, Thomas MB, 1979. Effect of IBA in combination with thiram, captan, and benomyl on the rooting of four ornamental species. N Z J Expt Agr 7: 263-296.

Hoitink HAJ, Stone AG, Han DY, 1997. Suppression of plant diseases by composts. Hort Sci 32: 184-187.

Hopkins E F, 1921. The botrytis blight of tulips. Cornell Agr Univ, Ithaca, NY. 55 pp.

Iqbal Z, Pervez MA, Ahmad S, Iftikhar Y, Yasin M, Nawaz A, M. Ghazanfar U, Dasti AA, Saleem A, 2010. Determination of minimum inhibitory concentration of fungicides against fungus Fusarium mangiferae. Pak J Bot 42: 3525-3532.

Isidori M, Lavorgna M, Nardelli A, Parrella A, 2005. Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. J Agric Food Chem 53: 8414-8417. http://dx.doi.org/10.1021/jf0511695

Kistner T, Nitz G, Schnitzler WH, 2004. Phytotoxic effects of some compounds of olive mill wastewater (OMW). Fresen Environ Bull 13: 1360-1361.

Klingensmith MJ, 1961. The effect of certain benzazole compounds on plant growth and development. Amer J Bot 48: 40-45. http://dx.doi.org/10.2307/2439593

Kotsou M, Mari I, Lasaridi K, Chatzipavlidis I, Balis C, Kyriacou A, 2004. The effect of olive mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Appl Soil Ecol 26: 113-121. http://dx.doi.org/10.1016/j.apsoil.2003.12.001

Kozakiewicz Z, 1992. CMI Descriptions of pathogenic fungi and bacteria. Sheet no. 111. Mycopathologia 117: 163-184. http://dx.doi.org/10.1007/BF00442779

Lee LW, Sanderson KC, Williams JG, 1983. Effect of fungicides applied to polyurethane propagation blocks on rooting of poinsettia cuttings. HortScience 18: 359-360.

Martínez-Nieto L, Ramos-Cormenzana A, Garcia-Pareja MP, Garrido-Hoyos SE, 1992. Biodegradación de compuestos fenólicos del alpechín con Aspergillus terreus. Grasas Aceites 43: 75-81. http://dx.doi.org/10.3989/gya.1992.v43.i2.1177

Mekki A, Dhouib A, Aloui F, Sayadi S, 2006. Olive wastewater as an ecological fertilizer. Agron Sustain Dev 26: 61-67. http://dx.doi.org/10.1051/agro:2005061

Mendonça E, Martins A, Anselmo AM, 2004. Biodegradation of natural phenolic compounds as single and mixed substrates by Fusarium flocciferum. Electron J Biotechnol 7: 30-37. http://dx.doi.org/10.2225/vol7-issue1-fulltext-3

Migheli Q, Aloi C, Gullino ML, 1990. Resistance of Botrytis elliptica to fungicides. Acta Hort 266: 429-436.

Millan B, Lucas R, Robles A, García T, de Cienfuegos GA, Gálvez A, 2000. A study on the microbiota from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential. Microbiol Res 155: 143-147. http://dx.doi.org/10.1016/S0944-5013(00)80027-0

Moreno AB, del Pozo ÁM, Borja M, San Segundo B, 2003. Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 11: 1344-1353. http://dx.doi.org/10.1094/PHYTO.2003.93.11.1344

Mouncif M, Tamoh S, Faid M, Achkari-Begdouri A, 1993. A study of chemical and microbiological characteristics of olive mill waste water in Morocco. Grasas Aceites 44: 335-338. http://dx.doi.org/10.3989/gya.1993.v44.i6.1059

Onions AHS 1966. Aspergillus niger. CMI Descriptions of Pathogenic Fungi and Bacteria 94: 1-2.

Ouzounidou G, Asfi M, Sortirakis N, Papadopoulou P, Gaitis F, 2008. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J Hazard Mater 158: 523-530. http://dx.doi.org/10.1016/j.jhazmat.2008.01.100

Ouzounidou G, Zervakis GI, Gaitis F, 2010. Raw and microbiologically detoxified olive mill waste and their impact on plant growth. Terr Aquat Environ Toxicol 4: 21-38.

Paredes C, Cegarra J, Roig A, Sanchez-Monedero MA, Bernal MP, 1999. Characterisation of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresource Technol 67: 111-115. http://dx.doi.org/10.1016/S0960-8524(98)00106-0

Piwoni A, 2007. Health status of two plantations of tulip near Pulawy and fungi isolated from foliar parts and bulbs. EJPAU. Available in http://www.ejpau.media.pl/volume10/issue4/art-07.html. [09 February 2014].

Rathod LR, Jadhav MD, Kanse DS, Patil DP, Gulhane SD, Deshmukh1 P., 2010. Effects of fungicides on seed borne pathogen of groundnut. Int J Adv Biotechnol Res 1: 17-20.

Réblová Z, 2012. Effect of temperature on the antioxidant activity of phenolic acids. Czech J Food Sci 30: 171-177.

Reyes AA, 1975. Phytotoxicity of benomyl to saffron. Phytopathology 65: 1-6.

Ryan BF, Joiner BL, Cryer JD, 2005. MINITAB Handbook: updated for release 14. Books/Cole-Thomson Learning, Belmont, USA. 505 pp.

Saaltink GJ, 1971. The infection of bulbs by Penicillium sp. Int Soc Hort Sci 23: 35-41.

Sahile S, Sakhuja PK, Fininsa C, Ahmed S, 2011. Potential antagonistic fungal species from Ethiopia for biological control of chocolate spot disease of faba bean. Afr Crop Sci J 19: 213-225.

Singleton VL, Rossi A, 1965. Colorimetry of total phenolics with phosphomolibdic-phosphotungestic acid reagents. Am J Enol Vitic 16: 144-158.

Smid E J, de Witte Y, Gorris LGM, 1995. Secondary plant metabolites as control agents of postharvest Penicillium rot on tulip bulbs. Postharvest Biol Technol 6: 303-312. http://dx.doi.org/10.1016/0925-5214(95)00010-4

Stroo HF, Elliott LF, Papendick RI, 1988. Growth, survival and toxin production of root-inhibitory pseudomonads on crop residues. Soil Biol Biochem 20: 201-207. http://dx.doi.org/10.1016/0038-0717(88)90037-5

Timmer MJG, Van Der Valk GGM, 1973. Effect of planting density on the number and weight of tulip daughter bulbs. Sci Hortic 1: 193-200. http://dx.doi.org/10.1016/0304-4238(73)90030-7

Tiquia SM, Tam NFY, Hodgkiss IJ, 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93: 249-256. http://dx.doi.org/10.1016/S0269-7491(96)00052-8

Van Lersel MW, Bugbee B, 1996. Phytotoxic effects of benzimidazole fungicides on bedding plants. J Amer Soc Hort Sci 121: 1095-1102.

Wulff-Zotelle C, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H, 2010. Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. Plant Cell Environ 33: 1974-1988. http://dx.doi.org/10.1111/j.1365-3040.2010.02199.x

How to Cite
LykasC., VagelasI., & GougouliasN. (2014). Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases. Spanish Journal of Agricultural Research, 12(1), 233-243. https://doi.org/10.5424/sjar/2014121-4662
Plant protection