Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory

  • Sofiane Ouazaa Dept. Suelo y Agua. Estación Experimental Aula Dei (EEAD-CSIC). Apdo. 202, 50080 Zaragoza
  • Javier Burguete Dept. Suelo y Agua. Estación Experimental Aula Dei (EEAD-CSIC). Apdo. 202, 50080 Zaragoza
  • M. Pilar Paniagua Dept. Suelo y Agua. Estación Experimental Aula Dei (EEAD-CSIC). Apdo. 202, 50080 Zaragoza
  • Raquel Salvador Dept. Suelo y Agua. Estación Experimental Aula Dei (EEAD-CSIC). Apdo. 202, 50080 Zaragoza
  • Nery Zapata Dept. Suelo y Agua. Estación Experimental Aula Dei (EEAD-CSIC). Apdo. 202, 50080 Zaragoza
Keywords: sprinkler irrigation, ballistic model, center-pivot, kinetic energy losses

Abstract

Ballistic simulation of the spray sprinkler for self-propelled irrigation machines requires the incorporation of the effect of the jet impact with the deflecting plate. The kinetic energy losses produced by the jet impact with the spray plate were experimentally characterized for different nozzle sizes and two working pressures for fixed spray plate sprinklers (FSPS). A technique of low speed photography was used to determine drop velocity at the point where the jet is broken into droplets. The water distribution pattern of FSPS for different nozzle sizes, working at two pressures and under different wind conditions were characterized in field experiments. The ballistic model was calibrated to simulate water distribution in different technical and meteorological conditions. Field experiments and the ballistic model were used to obtain the model parameters (D50, n, K1and K2). The results show that kinetic energy losses decrease with nozzle diameter increments; from 80% for the smallest nozzle diameter (2 mm) to 45% for nozzle diameters larger than 5.1 mm, and from 80% for the smallest nozzle diameter (2 mm) to 34.7% for nozzle diameters larger than 6.8 mm, at 138 kPa and 69 kPa working pressures, respectively. The results from the model compared well with field observations. The calibrated model has reproduced accurately the water distribution pattern in calm (r=0.98) and high windy conditions (r=0.76). A new relationship was found between the corrector parameters (K1 and K2) and the wind speed. As a consequence, model simulation will be possible for untested meteorological conditions.

Downloads

Download data is not yet available.

References

Carrión P, Tarjuelo JM, Montero J, 2001. SIRIAS: a simulation model for sprinkler irrigation: I. Description of the model. Irrigation Sci 20: 73-84. http://dx.doi.org/10.1007/s002710000031

DeBoer DW, Beck DL, Bender AR, 1992. A field evaluation of low, medium and high pressure sprinklers. T ASAE 35 (4): 1185-1189. http://dx.doi.org/10.13031/2013.28718

Dechmi F, Playan E, Cavero J, Martınez-Cob A, Faci JM, 2004. A coupled crop and solid-set sprinkler simulation model: I. Model development. J Irrig Drain Eng ASCE I130 (6): 499-510. http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:6(499)

Delirhasannia R, Sadraddini AA, Nazemi AH, Farsadizadeh D, Playán E, 2010. Dynamic model for water application using centre pivot irrigation. Biosyst Eng 105: 476-485. http://dx.doi.org/10.1016/j.biosystemseng.2010.01.006

Faci JM, Salvador R, Playán E, Sourell H, 2001. A comparison of fixed and rotating spray plate sprinklers. J Irrig Drain Eng ASCE 127(4): 224-233. http://dx.doi.org/10.1061/(ASCE)0733-9437(2001)127:4(224)

Fishman GS, 1995. Monte Carlo: concepts, algorithms, and applications. Springer, NY. 621 pp.

Fukui Y, Nakanishi K, Okamura S, 1980. Computer evaluation of sprinkler irrigation uniformity. Irrigation Sci 2: 23-32. http://dx.doi.org/10.1007/BF00285427

Kincaid DC, 1996. Spraydrop kinetic energy from irrigation sprinklers. T ASAE 39: 847-853. http://dx.doi.org/10.13031/2013.27569

Kincaid DC, Solomon KH, Oliphant JC, 1996. Drop size distributions for irrigation sprinklers. T ASAE 39(3): 839-845. http://dx.doi.org/10.13031/2013.27568

King BA, Bjorneberg DL, 2010. Droplet kinetic energy from center-pivot sprinklers. T ASABE, IRR10 (8726): 1-11.

King BA, Bjorneberg DL, 2012. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers. T ASABE 55(2): 505-512. http://dx.doi.org/10.13031/2013.41386

King BA, Winward TW, Bjorneberg DL, 2010. Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers. Appl Eng Agric 26(2): 263-271. http://dx.doi.org/10.13031/2013.29551

Le Gat Y, Molle B, 2000. Model of water application under pivot sprinkler: I. Theoretical grounds. J Irrig Drain Eng 126(6): 343-347. http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:6(343)

Li J, Kawano H, Yu K, 1994. Droplet size distributions from different shaped sprinkler nozzles. T ASAE 37(6): 1871-1878. http://dx.doi.org/10.13031/2013.28278

Molle B, Le Gat Y, 2000. Model of water application under pivot sprinkler: II. Calibration and results. J Irrig Drain Eng 126(6): 348-354. http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:6(348)

Montero J, Tarjuelo JM, Carrión P, 2001. SIRIAS: a simulation model for sprinkler irrigation. II Calibration and validation of the model. Irrigation Sci 20: 85-98. http://dx.doi.org/10.1007/s002710000032

Omary M, Sumner H, 2001. Modeling water distribution for irrigation machine with small spray nozzles. J Irrig Drain Eng 127 (3): 156-160. http://dx.doi.org/10.1061/(ASCE)0733-9437(2001)127:3(156)

Playán E, Garrido S, Faci JM, Galán A, 2004. Characterizing pivot sprinklers using an experimental irrigation machine. Agr Water Manage 70: 177-193. http://dx.doi.org/10.1016/j.agwat.2004.06.004

Playán E, Zapata N, Faci JM, Tolosa D, Lacueva JL, Pelegrín J, Salvador R, Sánchez I, Lafita A, 2006. Assessing sprinkler irrigation uniformity using a ballistic simulation model. Agr Water Manage 84: 86-100. http://dx.doi.org/10.1016/j.agwat.2006.01.006

Salvador R, Bautista-Capetillo C, Burguete J, Zapata N, Playán E, 2009. A photographic methodology for drop characterization in agricultural sprinklers. Irrigation Sci 27(4): 307-317. http://dx.doi.org/10.1007/s00271-009-0147-2

Sánchez Burillo G, Delirhasannia R, Playán E, Paniagua P, Latorre B, Burguete J, 2013. Initial drop velocity in a fixed spray plate sprinkler. J Irrig Drain Eng 139(7): 521-531. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000573

Seginer I, Kantz D, Nir D, 1991. The distortion by wind of the distribution patterns of single sprinklers. Agric Wat Manag 19: 314-359. http://dx.doi.org/10.1016/0378-3774(91)90026-F

Siddiqui MM, 1961. Some problems connected with rayleigh distributions. The Journal of Research of the National Bureau of Standards, Sec. D: Radio Propagation 66D (2): 169.

Tarjuelo JM, Carrión P, Valiente M, 1994. Simulación de la distribución del riego por aspersión en condiciones de viento. Invest Agr: Prod Prot Veg 9(2): 255-272.

Published
2014-07-07
How to Cite
OuazaaS., BurgueteJ., PaniaguaM. P., SalvadorR., & ZapataN. (2014). Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory. Spanish Journal of Agricultural Research, 12(3), 850-863. https://doi.org/10.5424/sjar/2014123-5507
Section
Water management