Integrated effect of crop sowing date and herbicide stress on fitness of Bromus diandrus Roth

  • Addy L. García Universitat de Lleida, ETSEA, Agrotecnio, Dpt. Hortofruticultura, Botánica y Jardinería. Av. Rovira Roure 191. 25198 Lleida
  • Aritz Royo-Esnal Universitat de Lleida, ETSEA, Agrotecnio, Dpt. Hortofruticultura, Botánica y Jardinería. Av. Rovira Roure 191. 25198 Lleida
  • Joel Torra Universitat de Lleida, ETSEA, Agrotecnio, Dpt. Hortofruticultura, Botánica y Jardinería. Av. Rovira Roure 191. 25198 Lleida
  • Jordi Recasens Universitat de Lleida, ETSEA, Agrotecnio, Dpt. Hortofruticultura, Botánica y Jardinería. Av. Rovira Roure 191. 25198 Lleida
Keywords: delayed sowing, emergence time, reproductive biomass, vegetative biomass, resource allocation, no-tillage


Bromus diandrus Roth is a common weed species that has increased in no-tillage dry-land cereal fields in NE Spain because of the limited control options. The fitness response of plants with different emergence times (ETs) and its influence on demography has huge implications in weed management. With this subject, three ETs (F1, F2 and F3) of B. diandrus were established through three crop-sowing dates (D1, Oct.; D2, Nov.; D3, Dec.) for each of the three years in a barley-wheat-wheat rotation. In barley, the herbicides applied were not specific for B. diandrus, whereas in wheat the specific herbicide mesosulfuron-methyl plus iodosulfuron-methyl-sodium was applied. Plant density after treatments and fitness characteristics were estimated for each weed ET. Weed density decreased for later ETs and fitness was density-dependent, showing significantly higher values when a non-specific herbicide was applied, except in number of caryopses per spikelet. The increasing fitness shown by plants with later ETs and the linear relationships of vegetative biomass vs reproductive biomass and fecundity were disrupted by the herbicide mesosulfuron-methyl plus iodosulfuron-methyl-sodium. Plants that had survived this herbicide when wheat was growing had lower values for all the characteristics analysed. After three seasons, as a consequence of decreasing seed recruitment, a practical depletion of the B. diandrus population was achieved in F2 and F3 (<2.8 and <1 plants/m2, respectively) but not in F1 (60.5 plants/m2). This study shows the importance of delayed crop sowing to optimize the control of B. diandrus in cereal fields with no tillage.


Download data is not yet available.



Arrúe JL, Cantero-Martínez C, López MV, Moreno F, Murillo JM, Pérez De Ciriza JJ, Sombrero A, Tenorio JL, Zambrana E, 2007. Conservation agriculture research in Spain. In: Knowledge assessment and sharing on sustainable agriculture (KASSA). Ed Cirad. Paris

Calderini DF, Reynolds MP, 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum x T. tauschii). Aust J Plant Physiol 27: 183-191.

Conley SP, Binning LK, Boerboom CM, Stoltenboom DE, 2002. Estimating giant foxtail cohort productivity in soybean based on weed density, leaf area or volume. Weed Sci 50: 72-78.[0072:EGFCPI]2.0.CO;2

Couloume B, Adrien M, 2005. Atlantis WG, a new product for postemergence weed control in cereals – Experiences in France. Pflanzenschutz-Nachrichten Bayer 58: 261-268.

Cousens RD, Firbank LG, Mortimer AM, Smith GR, 1988. Variability in the relationship between crop yield and weed density for winter wheat and Bromus sterilis. J Appl Ecol 25: 1033-1044.

Del Monte JP, Dorado J, 2011. Effect of light conditions and after ripening time on seed dormancy loss of Bromus diandrus. Weed Res 51: 581-590.

Dyer AR, Hardison, JL, Rice KJ, 2012. Phenology constrains opportunistic growth response in Bromus tectorum L. Plant Ecol 213: 103-112.

Gallart M, Mas MT, Verdú AMC, 2010. Demography of Digitaria sanguinalis: Effect of the emergence time on survival, reproduction, and biomass. Weed Biol Manage 10: 132-140.

García AL, Royo-Esnal A, Torra J, Cantero-Martínez C, Recasens J, 2014. Integrated management of Bromus diandrus in dryland cereal fields under no-till. Weed Res 54: 408-417.

Gill G, Blacklow W, 1984. Effect of great brome (Bromus diandrus Roth.) on the growth of wheat and great brome and their uptake of nitrogen and phosphorus. Aust J Agric Res 35: 1-8.

Gill GS, Poole ML, Holmes JE, 1987. Competition between wheat and brome grass in Western Australia. Aust J Exp Agr 27: 291-294.

González Rabanal F, Casal M, Trabaud L, 1994. Effects of high temperatures, ash and seed position in the inflorescence on the germination of three Spanish grasses. J Veg Sci 5: 289-294.

Izquierdo J, Recasens J, Fernández-Quintanilla C, Gill G, 2003. Effects of crop and weed densities on the interactions between barley and Lolium rigidum in several Mediterranean locations. Agronomie 23: 529-536.

Kleemann SGL, Gill GS, 2006. Differences in the distribution and seed germination behaviour of populations of Bromus rigidus and Bromus diandrus in South Australia: Adaptations to habitat and implications for weed management. Aust J Agric Res 57: 213-219.

Kleemann SGL, Gill GS, 2009a. Population ecology and management of rigid brome (Bromus diandrus) in Australian Cropping Systems. Weed Sci 57: 202-207.

Kleemann SGL, Gill GS, 2009b. The role of imidazolinone herbicides for the control of Bromus diandrus (rigid brome) in wheat in southern Australia. Crop Prot 28: 913-916.

Medd RW, Auld BA, Kemp DR, Murison RD, 1985. The influence of wheat density and spatial arrangement on annual ryegrass, Lolium rigidum Gaudin, competition. Aust J Agric Res 36: 361-371.

Norris RF, 2007. Weed fecundity: current status and future needs. Crop Prot 26: 182-188.

Papadakis J, 1966. Climates of the world and their agricultural potentialities. Editorial Albatros, Buenos Aires, Argentina. 17 pp.

Powles SB, Matthews SJM, 1996. Integrated weed management for the control of herbicide resistant annual ryegrass (Lolium rigidum). Proc. II Int Weed Control Cong. Copenhagen, Denmark. pp: 407-414.

Pujol M, 1998. Gramíneas, aplicaciones agronómicas. Ed. Universitat Politècnica de Catalunya. Barcelona. 219 pp.

Rapparini G, Campagna G, Geminiani E, 2006. Graminacee del grano, evoluzione della lotta. Informatore Agrario 62: 73-75.

Recasens J, Caimons O, Torra J, Taberner A, 2007. Variation in seed germination and early growth between and within acetolacetate synthase herbicide resistant and susceptible Lolium rigidum accessions. Seed Sci Technol 35: 32-47.

Riba F, 1993. Demografia i dinàmica de poblacions de Bromus diandrus Roth en cereals d'hivern. Doctoral thesis. Universitat de Lleida, Spain. 117 pp.

Riba F, Recasens J, 1997. Bromus diandrus Roth en cereales de invierno. In: La biología de las malas hierbas de España (Sans FX & Fernández-Quintanilla C, eds). Ed. Phytoma España-Sociedad Española de Malherbología. pp: 25–35.

Rice KJ, Dyer AR, 2001. Seed aging, delayed germination and reduced competitive ability in Bromus tectorum. Plant Ecol 155: 237-243.

SSS, 1994. Keys to soil taxonomy 6th ed. Soil Survey Staff, US Government Printing Office, Washington DC, USA. 306 pp.

Thompson BK, Weiner J, Warwick SI, 1991. Size dependent reproductive output in agricultural weeds. Can J Bot 69: 442-446.

Torra J, Recasens J, 2008. Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Sci 56: 826-833.

Torra J, Cirujeda A, Recasens J, Taberner A, Powles S, 2010. PIM (Poppy Integrated Management): a bio-economic model for Papaver rhoeas in rainfed cropping systems. Weed Res 50: 127-139.

Young FL, Thorne ME, 2004. Weed-species dynamics and management in no-till and reduced-till fallow cropping systems for the semi-arid agricultural region of the Pacific Northwest, USA. Crop Prot 23: 1097-1110.

How to Cite
GarcíaA. L., Royo-EsnalA., TorraJ., & RecasensJ. (2015). Integrated effect of crop sowing date and herbicide stress on fitness of Bromus diandrus Roth. Spanish Journal of Agricultural Research, 13(1), e1001.
Plant protection