Fractional-order mathematical model of an irrigation main canal pool

  • Shlomi N. Calderon-Valdez Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales. Av. Camilo Jose Cela s/n, 13071 Ciudad Real
  • Vicente Feliu-Batlle Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales. Av. Camilo Jose Cela s/n, 13071 Ciudad Real
  • Raul Rivas-Perez Havana Polytechnic University (CUJAE), Department of Automatic Control and Computer Science. Calle 114, No. 11901. Marianao, 19390, Ciudad de la Habana http://orcid.org/0000-0002-4639-4274
Keywords: prototype hydraulic canal, system identification, parameter estimation, canals automation, management of water resources

Abstract

In this paper a fractional order model for an irrigation main canal is proposed. It is based on the experiments developed in a laboratory prototype of a hydraulic canal and the application of a direct system identification methodology. The hydraulic processes that take place in this canal are equivalent to those that occur in real main irrigation canals and the results obtained here can therefore be easily extended to real canals. The accuracy of the proposed fractional order model is compared by deriving two other integer-order models of the canal of a complexity similar to that proposed here. The parameters of these three mathematical models have been identified by minimizing the Integral Square Error (ISE) performance index existing between the models and the real-time experimental data obtained from the canal prototype. A comparison of the performances of these three models shows that the fractional-order model has the lowest error and therefore the higher accuracy. Experiments showed that our model outperformed the accuracy of the integer-order models by about 25%, which is a significant improvement as regards to capturing the canal dynamics.

Downloads

Download data is not yet available.

References

Bagley RL, Calico RA, 1991. Fractional order state equations for the control of visco-elastically damped structures. J Guid Control Dyn 14: 304–311. http://dx.doi.org/10.2514/3.20641

Calderon-Valdez SN, Rivas-Perez R, Ruiz Torija MA, Feliu-Batlle V, 2009. Fractional PI controller design with optimized robustness to time delay changes in main irrigation canals. Proc 14th IEEE Conf on Emerging Technologies and Factory Automation, Palma de Mallorca (Spain), Sept 22-25. pp: 1411-1417. http://dx.doi.org/10.1109/etfa.2009.5347163

Chaudhry MH, 2008. Open-channel flow, 2nd ed., Springer, NY, USA, 523 pp. http://dx.doi.org/10.1007/978-0-387-68648-6

Clemmens AJ, Schuurmans J, 2004. Simple optimal downstream feedforward canal controllers: theory. J Irrig Drain Eng 130(1): 26-34. http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(26)

Clemmens AJ, 2006. Canal automation. Resource Magazine 13(1): 7-8.

Cueto-Medina W, Rivas-Perez R, 2003. Control system based on programmable logic controllers of the Troncoso water distribution network. Revista de Ingeniería Electrónica, Automática y Comunicaciones 24(2): 6-14.

de Halleux J, Prieur C, Coron JM, d'Andra Novel B, Bastin G, 2003. Boundary feedback control in networks of open channels. Automatica 39(8): 1365-1376. http://dx.doi.org/10.1016/S0005-1098(03)00109-2

Dulhoste JF, Georges D, Besanon G, 2004. Nonlinear control of open-channel water flow based on collocation control model. J Hydraul Eng 130(3): 254-266. http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:3(254)

Feliu V, Feliu S, 1997. A method of obtaining the time domain response of an equivalent circuit model. J Electroanal Chem 435: 1-10. http://dx.doi.org/10.1016/S0022-0728(97)00232-5

Feliu-Batlle V, Rivas-Perez R, Castillo-Garcia F, 2005. Fractional robust control to delay changes in main irrigation canals. IFAC-PapersOnline, 16(1): 28-33.

Feliu V, Rivas R, Sanchez Rodriguez L, Ruiz-Torija MA, 2009. Robust fractional order PI controller implemented on a hydraulic canal. J Hydr Eng ASCE 135(5): 271-282. http://dx.doi.org/10.1061/(ASCE)0733-9429(2009)135:4(271)

Feliu-Batlle V, Rivas-Perez R, Castillo-Garcia FJ, Sanchez-Rodriguez L, Linares Saez A, 2011. Robust fractional order controller for irrigation main canal pools with time-varying dynamical parameters. Comput Electron Agr 76(2): 205-217. http://dx.doi.org/10.1016/j.compag.2011.01.018

Garnier H, Young P, 2004. Time-domain approaches to continuous-time model identification of dynamical systems from sampled data. Proc Am Control Conf, Boston (MA), June 30-July, Vol 2, pp: 667-672.

Jesus IS, Machado JAT, 2011. Fractional control with a Smith Predictor. ASME J Comput Nonlinear Dynam 6(3): 031014. http://dx.doi.org/10.1115/1.4002834

Khasraghi MM, Sefidkouhi MAG, Valipour M, 2015. Simulation of open- and closed-end border irrigation systems using SIRMOD. Arch Agron Soil Sci 61(7): 929-941. http://dx.doi.org/10.1080/03650340.2014.981163

Litrico X, Fromion V, 2004. Analytical approximation of open-channnel flow for controller design. Appl Math Model 28(7): 677-695. http://dx.doi.org/10.1016/j.apm.2003.10.014

Litrico X, Fromion V, 2009. Modeling and control of hydrosystems. Springer Verlag, London, UK, 409 pp. http://dx.doi.org/10.1007/978-1-84882-624-3

Ljung L, 1999. System identification. Theory for the user. Prentice-Hall, NJ, USA, 607 pp.

Malaterre PO, 1995. Regulation of irrigation canals: characterization and classification. J Irrig Drain Eng 9(4): 297-327. http://dx.doi.org/10.1007/BF00881619

Malaterre PO, Baume JP, 1998. Modeling and regulation of irrigation canal: existing applications and on-going researches. Proc IEEE Int Conf on Systems, Man, and Cybernetics, San Diego (USA): Oct 11-14. pp: 3850-3855. http://dx.doi.org/10.1109/icsmc.1998.726688

Martinez-Gonzales R, Bolea Y, Grau A, Martinez-Garcia H, 2009. An LPV fractional model for canal control. Math Probl Eng 2009, Article ID 471540. http://dx.doi.org/10.1155/2009/471540

Montazar A, Van Overloop PJ, Brouwer R, 2005. Centralized controller for the Narmada Main Canal. J Irrig Drain Eng 54: 79-89. http://dx.doi.org/10.1002/ird.155

Monje CA, Chen YQ, Vinagre BM, Xue DY, Feliu V, 2010. Fractional-order systems and controls. Fundamentals and applications. Springer, London, UK, 415 pp. http://dx.doi.org/10.1007/978-1-84996-335-0

Pedregal DJ, Rivas-Perez R, Feliu V, Sanchez L, Linares A, 2009. A non-linear forecasting system for the Ebro River at Zaragoza, Spain. Environ Model Softw 24(4): 502-509. http://dx.doi.org/10.1016/j.envsoft.2008.09.010

Podlubny I, 1999. Fractional differential equations. Academic Press, San Diego, USA, 368 pp.

Rivas-Perez R, 1990. Automatic control of water distribution in irrigation systems. D.Sc thesis. Sci Res Inst on Land Reclamation and Hydraulic Engineering of Ukrainian Academy of Agricultural Sciences, Kiev, Ukraine.

Rivas-Perez R, Feliu-Batlle V, Sanchez-Rodriguez L, Pedregal DJ, Linares A, Aguilar JV, Langarita P, 2008. Identification of the first pool of the Imperial de Aragon main irrigation canal. Ingeniería Hidráulica en Mexico 23(1): 71-87.

Rivas-Perez R, Feliu-Batlle V, Castillo-Garcia FJ., Sanchez-Rodriguez L, Linares-Saez A, 2011. Control oriented model of a complex irrigation main canal pool. IFAC-PapersOnline 18(1): 2919-2924.

Rivas-Perez R, Feliu-Batlle V, Castillo-Garcia FJ, Linares-Saez A, 2014. Mathematical model for robust control of an irrigation main canal pool. Environ Model Softw 51(1): 207-220. http://dx.doi.org/10.1016/j.envsoft.2013.10.002

Rodellar J, Gomez M, Bonet L, 1993. Control method for on-demand operation of open-channel flow. J Irrig Drain Eng 119(2): 225-241. http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:2(225)

Ruiz VM, Ramirez J, 1998. Predictive control in irrigation canal operation. Proc IEEE Int Conf on Systems, Man and Cybernetics, San Diego (USA), Oct 11-14. pp: 3897-3901.

Sawadogo S, Faye RM, Malaterre PO, Mora-Camino F, 1998. Decentralized predictive controller for delivery canals. Proc IEEE Int Conf on Systems, Man and Cybernetics, San Diego (USA), Oct 11-14. pp: 3880-3884. http://dx.doi.org/10.1109/icsmc.1998.726693

Schuurmans J, Clemmens AJ, Dijkstra S, Hof A, Brouwer R, 1999. Modeling of irrigation and drainage canal for controller design. J Irrig Drain Eng 125(6): 338-344. http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:6(338)

Sepulveda C, 2007. Instrumentation, model identification and control of an experimental irrigation canal. Doctoral Thesis. Univ. Politécnica, Catalunya, Spain.

Tavakoli-Kakhki M, Haeri M, Tavazoei MS, 2010. Simple fractional order model structures and their applications in control system design. Eur J Control 6: 680-694. http://dx.doi.org/10.3166/ejc.16.680-694

Valipour M, 2012. Comparison of surface irrigation simulation models: full hydrodynamic, zero inertia, kinematic waves. J Agr Sci 4(12): 68-74. http://dx.doi.org/10.5539/jas.v4n12p68

Vinagre BM, Podlubny I, Hernandez A, Feliu V, 2000. Some approximations of fractional orders operator used in control theory and applications. Fract Calc Appl Anal 3(3): 231-248.

Wahlin BT, Clemmens AJ, 2006. Automatic downstream water-level feedback control of branching canal networks: theory. J Irrig Drain Eng 132(3): 198-207. http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:3(198)

Weyer E, 2001. System identification of an open water channel. Control Eng Pract 9: 1289-1299. http://dx.doi.org/10.1016/S0967-0661(01)00099-5

Published
2015-08-28
How to Cite
Calderon-ValdezS. N., Feliu-BatlleV., & Rivas-PerezR. (2015). Fractional-order mathematical model of an irrigation main canal pool. Spanish Journal of Agricultural Research, 13(3), e0212. https://doi.org/10.5424/sjar/2015133-7244
Section
Agricultural engineering