Biochemical characterization of legume seeds as ingredients in animal feed

  • Mercedes Martín-Pedrosa SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
  • Alejandro Varela SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
  • Eva Guillamon INIA-Centro para la Calidad de los Alimentos. Campus Universitario Duques de Soria. C/ José Tudela s/n, 42004 Soria
  • Blanca Cabellos SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
  • Carmen Burbano SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
  • Jose Gomez-Fernandez Centro de Pruebas de Porcino del ITACyL. Ctra. Riaza-Toro s/n, 40353 Hontalbilla (Segovia)
  • Eduardo de Mercado Centro de Pruebas de Porcino del ITACyL. Ctra. Riaza-Toro s/n, 40353 Hontalbilla (Segovia)
  • Emilio Gomez-Izquierdo Centro de Pruebas de Porcino del ITACyL. Ctra. Riaza-Toro s/n, 40353 Hontalbilla (Segovia)
  • Carmen Cuadrado SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
  • Mercedes Muzquiz SGIT-INIA, Dept. Tecnología de Alimentos. Ctra. de la Coruña Km. 7,5. 28040 Madrid
Keywords: legumes, bioactive compounds, feedstuffs, Cicer, Vicia, Lathyrus


The current European protein deficit is estimated as high as 70% of present needs. Because of the high protein content of their seeds, grain legumes are attractive candidates for lowering the deficiency in plant protein production. The objective of this work was to identify new sources of vegetable protein that would reduce our high dependence of soy, the main source of protein in the manufacture of feedstuffs. To achieve this goal, we determined the proximate composition, the bioactive components, as well as the antinutritional factors present in the studied seeds. In general, the protein, fat and carbohydrates content of legume seeds studied were within the limits found in the literature. The bioactive compounds detected in all the seeds were α-galactosides, myoinositol phosphates, protease inhibitors and phenols. IP6 (phytic acid) was the main inositol phosphate form in all the samples. The highest protease inhibitors content was detected in both Lathyrus cicera cultivars. Vicia ervilia and L. cicera cultivars showed low haemagglutinating activity (20.4 HU/g). The γ-glutamyl-S-ethenyl-cysteine content in Vicia narbonensis was around 16.0 mg/g. Both L. cicera varieties presented similar β-N-oxalyl-L-α, β-diaminopropionic acid content (0.80 mg/g). The two V. ervilia varieties showed high canavanine concentration (1.93-5.28 mg/g). Vicine was only detected in V. narbonensis cultivars (0.3 mg/g). The biochemical characterization carried out in this study allows us to know the limits of inclusion of these minor crop seeds in feed formulations in order to replace the soybean.


Download data is not yet available.


Aguilera Y, Estrella I, Benitez V, Esteban RM, Martín-Cabrejas MA, 2011. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res Int 44: 774-780.

AOAC Int, 2000. Official methods of analysis. Association of Official Analytical Chemists, Washington DC, 2000 pp.

Anadón-Navarro A, Cacho-Palomar JF, Ortega-Hernández T, Palou-Oliver A, 2010. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre el consumo humano ocasional de almortas (Lathyrus sativus). Revista del Comité Científico de la AESAN 11: 9-19.

Aranda P, Dostalova J, Frias, J, Lopez-Jurado, M, Kozlowska H, Pokorny J, Urbano G, Vidal-Valverde C, Zdyunczyk Z, 2001. Nutrition. In: Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characters; Hedley CL (ed). CABI Publishing, Oxon, UK. pp: 61-87.

Arias M, Simó C, Ortiz LT, De los Mozos-Pascual C, Barbas C, Cifuentes A, 2005. Detection and quantitation of a bioactive compound in Vicia narbonensis L. seeds by capillary electrophoresis-mass spectrometry: a comparative study with UV detection. Electrophoresis 26: 2351-2359.

Batterham ES, Saini HS, Andersen LM, Baigent RD, 1993. Tolerance of growing pigs in chickpeas (Cicer arietinum) to trypsin and chymotrypsin inhibitors and pigeon peas (Cajanus cajan) J Sci Food Agric 61: 211-216.

Berger JD, Robertson LD, Cocks PS, 2003. Agricultural potential of Mediterranean grain and forage legumes. 2. Anti-nutritional factor concentrations in the genus Vicia. Genet Resour Crop Ev 50: 201-212.

Bryant JA, Hughes SG, 2011. Vicia: chapter 14. In: Wild crop relatives: Genomic and breeding resources, legume crops and forages; Chittaranjan K (ed). pp: 273-290. Springer, Berlin.

Burbano C, Cubero JI, Cuadrado C, Muzquiz M, 1993. Determinación de factores antinutritivos termorresistentes en leguminosas. II. Vicina y convicina. Invest Agrar: Prod Prot Veg 8: 363-376.

Burbano C, Muzquiz M, Osagie A, Ayet G, Cuadrado C, 1995a. Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chem 52: 321-325.

Burbano C, Cuadrado C, Muzquiz M, Cubero JI, 1995b. Variation of favism-inducing factors (vicine, convicine and L-DOPA) during pod development in Vicia faba L. Plant Food Hum Nutr 47: 265-274.

Cacho J, Garcia MA, Ferrando I, 1989. Selective spectrophotometric determination of canavanine. Analyst 114: 965-968.

Capetillo CM, Abreu JE, Belmar R, 2001. Standardization of an in vitro method for predicting N digestibility in pig diets. Cuban J Agr Sci 35: 349-353.

Cardador-Martinez A, Maya-Ocaña K, Ortiz-Moreno A, Herrera-Cabrera BE, Davila-Ortiz G, Muzquiz-Elorrieta M, Martin-Pedrosa M, Burbano-Juana C, Cuadrado-Hoyos C, Jimenez-Martinez C, 2013. Effect of roasting and boiling on the content of vicine, convicine and L-3,4-dihydroxyphenylalanine in Vicia faba L. J Food Quality 35: 419-428.

Castleman G, 2000. A guide for feeding narbon bean to animals. Victorian Institute for Dryland Agriculture Australia, Walpeup, Victoria, Australia.

Chukwumah Y, Walker L, Ogutu S, Wambura P, Verghese M, 2013. Effect of canning and storage on the phenolic composition of peanuts. J Food Process Pres 37: 582-588.

Dávalos A, Gómez-Cordovés C, Bartolomé B, 2004. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 51: 7040-7043.

Davies RL, 1987. Preliminary evaluation of narbon beans (Vicia narbonensis) for pigs. In: Grain legumes for low rainfall areas (George D, ed.). Department of Agriculture of South Australia, Adelaide. pp: 39-41.

Dublecz K, 2011. Animal nutrition. [28 November, 2014].

Dueñas M, Fernández ML, Hernández T, Estrella I, Muñoz R, 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric 85: 297-304.

Eason PJ, Johnson RJ, Castleman GH, 1990. Effects of dietary inclusion of narbon beans (Vicia narbonensis) on the growth of broiler chickens. Aust J Agr Res 41: 565-573.

Enneking D, 1995. The toxicity of Vicia species and their utilisation as grain legumes. Centre for Legumes in Mediterranean Agriculture (CLIMA) Occasional Publication No. 6. University of Western Australia. 134 p.

Fordoñski G, Górecki RJ, Halmajan H, Horbowicz M, Jones RG, Lahuta LB, 2001. Seed physiology and biochemistry. In: Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characters; Hedley CL (ed). pp: 117-138. CABI Publishing, Oxon, UK.

Frias J, Vidal-Valverde C, Sotomayor C, Diaz-Pollan C, Urbano G, 2000. Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. Eur Food Res Technol 210: 340-345.

Gabert VM, Sauer WC, Li S, Fan MZ, Rademacher M, 1996. Exocrine pancreatic secretions in young pigs fed diets containing faba beans (Vicia faba) and peas (Pisum sativum): nitrogen, protein and enzyme secretions. J Sci Food Agric 70: 247-255.

Goyoaga C, Burbano C, Cuadrado C, Varela A, Guillamón E, Pedrosa MM, Muzquiz M, 2008. Content and distribution of vicine, convicine and L-DOPA during germination and seedling growth of two Vicia faba L. varieties. Eur Food Res Technol 227: 1537-1542.

Grant G, 1991. Legumes. In: Toxic substances in crop plants; D'Mello JPF, Duffus C, Duffus JH (Eds), pp: 49-67. Royal Soc Chem, Cambridge.

Grases F, Costa-Bauza A, Perelló J, Isern B, Vucenik I, Valiente M, Muñoz JA, Prieto RM, 2006. Influence of concomitant food intake on the excretion of orally administered myo-inositol hexaphosphate in humans. J Med Food 9: 72-76.

Greiner R, Konietzny U, 2006. Phytase for food application. Food Technol Biotechnol 44: 125-140.

Guillamón E, Pedrosa MM, Burbano C, Cuadrado C, Sanchez MC, Muzquiz M, 2008. The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem 107: 68-74.

Hedley C, 2001. Grain legume carbohydrates. In: Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characters; Hedley CL (ed). pp: 11-13. CABI Publishing, Oxon, UK.

Hugon J, Ludolph AC, Spencer PS, 2000. β-N-oxalylamino-L-alanine. In: Experimental and Clinical Neurotoxicology, 2nd edition; Spencer PS, Schaumburg H (eds). pp: 925-938. Oxford University Press, NY.

Huisman J, Tolman GH, 2001. Antinutritional factors in the plant proteins of diets for non-ruminants. In: Recent developments in pig nutrition, vol. 3; Garnsworthy PC, Wiseman J (eds). pp: 261-322. Nottingham University Press, Nottingham, UK.

Jacques S, Dixon RM, Holmes JHG, 1994. Narbon beans and field peas as supplements for sheep. Small Ruminal Res 15: 39-43.

Jezierny D, Mosenthin R, Bauer E, 2010. The use of grain legumes as a protein source in pig nutrition: A review. Anim Feed Sci Technol 157: 111-128.

Khalil AH, Mansour EH, 1995. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chem 54: 177-182.

Konietzny U, Greiner R, 2003. Phytic acid: Nutritional impact. In: Encyclopaedia of food science and nutrition; Caballero B, Trugo L, Finglas P (eds). pp: 4555-4563. Elsevier, London.

Kumar V, Sinha AK, Makkar HPS, Becker K, 2010. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120: 945-959.

Lajolo FM, Genovese MI, Pryme IF, Dale M, 2004. Beneficial (antiproliferative) effects of different substances. Proc 4th Int Workshop on antinutritional factors in legume seeds and oilseeds; Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds). EAAP publication No. 110, pp: 123-135. Wageningen, The Netherlands.

Lehrfeld J, 1994. HPLC Separation and quantification of phytic acid and some inositol phosphates in foods: problems and solutions. J Agric Food Chem 42: 2726-2731.

Loewus F, 2002. Biosynthesis of phytate in food grains and seeds. In: Food phytates; Reddy NR, Sathe SK (Eds), pp: 53-61. CRC Press, Boca Raton, FL, USA.

Lopez Bellido L, 1994. Grain legumes for animal feed. FAO Plant Production and Protection Series 26: 273-288.

Lopez-Bote C, Fructuoso G, Mateos GG, 2000. Sistemas de producción porcina y calidad de la carne. El cerdo ibérico. In: XVI Curso de Especialización FEDNA: Avances en Nutrición y Alimentación Animal; Rebollar PG, de Blas C, Mateos GG (Eds). pp: 77-111. Fundación Española para el Desarrollo de la Nutrición Animal, Madrid.

Marquardt RR, Fröhlich AA, 1981. Rapid reversed-phase high-performance liquid chromatographic method for the quantitation of vicine, convicine and L-DOPA. J Chrom 208: 373-379.

Martín-Cabrejas M, Aguilera Y, Pedrosa M, Cuadrado C, Hernández T, Díaz S, Esteban RM, 2009. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem 114: 1063-1068.

Martinez C, Ros G, Periago MJ, Ortuño J, López G, Rincón F, 1998. In vitro protein digestibility and mineral availability of green beans (Phaseolus vulgaris) as influenced by variety and pod size. J Sci Food Agric 77: 414-420.

Muzquiz M, 2000. Factores antinutricionales en fuentes proteicas. Jornada Internacional sobre Proteínas Alimentarias; Vioque J, Clemente A, Bautista J, Millán F (eds.). pp: 131-139. Universidad de Sevilla, Sevilla, Spain.

Muzquiz M, Wood JA, 2006. Antinutritional factors. In: Chickpea breeding and management; Yadav SS, Redden RJ, Chen W, Sharma B (Eds), pp: 143-167. CABI Publishing, Oxon, UK.

Muzquiz M, Rey C, Cuadrado C, Fenwick R, 1992. Effect of germination on oligosaccharide content of lupin species. J Chrom 607: 349-352.

Muzquiz M, Varela A, Burbano C, Cuadrado C, Guillamón E, Pedrosa MM, 2012. Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem Rev 11: 227-244.

Njaa LR, 1980. A method for determination of unoxidized and total methionine in protein concentrates, with special reference to fish meal. Brazil J Nutr 43: 339-348.

Oomah BD, Cardador-Martínez A, Loarca-Piña G, 2005. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J Sci Food Agric 85: 935-942.

Pedrosa MM, Cuadrado C, Burbano C, Allaf K, Haddad J, Gelencser E, Takacs K, Guillamón E, Muzquiz M, 2012. Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins content of different legumes. Food Chem 131: 862-868.

Pusztai A, Bardocz S, Martín-Cabrejas M, 2004. The mode of action of ANFs on the gastrointestinal tract and its microflora. Proc 4th Int Workshop on antinutritional factors in legume seeds and oilseeds; Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds). EAAP publication No. 110, pp: 87-100. Wageningen, The Netherlands.

Ramsay G, Griffiths W, 1996. Accumulation of vicine and convicine in Vicia faba and Vicia narbonensis. Phytochem 42: 63-67.

Rey AI, López-Bote CJ, Sanz R, 1997. Effect of extensive feeding on α-tocopherol concentration and oxidative stability of muscle microsomes from Iberian pigs. Anim Sci 65: 515-520.

Roberts MF, Wink M, 1998. Introduction. In: Alkaloids, Biochemistry, Ecology, and Medicinal Applications; Roberts MF, Wink M (Eds). pp: 1-7. Plenum Press, NY.

Rubio AR, Pedrosa MM, Cuadrado C, Gelencser E, Clemente A, Burbano C, Muzquiz M, 2006. Recovery at the terminal ileum of some legume non-nutritional factors in cannulated pigs. J Sci Food Agric 86: 979-987.

Sacristán M, Varela A, Pedrosa MM, Burbano C, Cuadrado C, Legaz ME, Muzquiz M, 2015. Determination of β-N-oxalyl-L-α, β-diaminopropionic acid and homoarginine in Lathyrus sativus and Lathyrus cicera by capillary zone electrophoresis. J Sci Food Agric 95: 1414-1420.

Sanchez-Vioque R, Cantón Prado L, Flores Gil F, Giménez Alvear MJ, De los Mozos Pascual M, Rodriguez Conde MF, 2008. Contents of total protein, L-canavanine and condensed tannins of the one-flowered vetch (Vicia articulata Hornem.) collection of the Bank of Plant Germoplasm of Cuenca. Gen Res Crop Evol 55: 949-957.

Sánchez-Vioque R, Rodriguez-Conde MF, Vioque J, Girón-Calle J, Santana-Méridas O, De-los-Mozos-Pascual M, Izquierdo-Melero ME, Alaiz M, 2011. A colorimetric method for determination of γ-glutamyl-S-ethenyl-cysteine in narbon vetch (Vicia narbonensis L.) seeds. Anal Biochem 418: 180-183.

Sandberg AS, 2002. Bioavailability of minerals in legumes. Br J Nutr 88: 281-285.

Sathe SK, Salunkhe DK, 1981. Studies on trypsin and chymotrypsin inhibitory activities, hemagglutinating activity, and sugars in the Great Northern beans (Phaseolus vulgaris L). J Food Sci 46: 626-629.

Trugo L, Muzquiz M, Pedrosa MM, Ayet G, Burbano C, Cuadrado C, 1999. Influence of malting on the composition of non-nutrient components of different seeds. Food Chem 6: 85-90.

Tschiersch B, Hanelt P, 1967. Die freien Aminosiuren der Samen von Vicia L. und die systematische Gliederung der Gattung Flora. Abteilung A 157: 389-406.

Urbano G, López-Jurado M, Aranda P, Vidal-Valverde C, Tenorio EJ, Porres E, 2000. The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56: 283-294.

Van Hees H, 2012. Avances recientes en nutrición de cerdos en crecimiento: efectos nutricionales y funcionales de ingredientes alimenticios y nutrientes. XXVIII Curso de Especialización FEDNA. pp: 249-266. Fundación Española para el Desarrollo de la Nutrición Animal, Madrid.

Wali SA, Hobi AA, Nouri A, 2005. Some physiological and histological changes in the broilers fed Gagoz seeds (Narbon vetch). J Biol Sci 5: 111-113.

Welham T, Domoney C, 2000. Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159: 289-299.

Zduńczyk Z, Jankowski J, Juśkiewicz J, Lecewicz A, Slominski B, 2010. Application of soybean meal, soy protein concentrate and isolate differing in α-galactosides content to low- and high-fibre diets in growing turkeys. J Anim Physiol Anim Nutr 94: 561-570.

Zollitsch W, 2007. Perspective challenges in the nutrition of organic pigs. J Sci Food Agric 87: 2747-2750.

How to Cite
Martín-PedrosaM., VarelaA., GuillamonE., CabellosB., BurbanoC., Gomez-FernandezJ., de MercadoE., Gomez-IzquierdoE., CuadradoC., & MuzquizM. (2016). Biochemical characterization of legume seeds as ingredients in animal feed. Spanish Journal of Agricultural Research, 14(1), e0901.
Plant production (Field and horticultural crops)