Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution

  • Alfredo Granados Technical University of Madrid (UPM), Dept. Hydraulic, Energy and Environmental Engineering. C. Profesor Aranguren 3, 28040 Madrid
  • Francisco J. Martín-Carrasco Technical University of Madrid (UPM), Dept. Hydraulic, Energy and Environmental Engineering. C. Profesor Aranguren 3, 28040 Madrid
  • Silvestre García de Jalón Technical University of Madrid (UPM), Dept. Agricultural Economics and Social Sciences. Av. Puerta de Hierro 2, 28040 Madrid
  • Ana Iglesias Technical University of Madrid (UPM), Dept. Agricultural Economics and Social Sciences. Av. Puerta de Hierro 2, 28040 Madrid
Keywords: Clément’s First Formula, coefficient of utilisation, degree of freedom, demand increase, discharge determination, factor of safety, stakeholder contribution

Abstract

Agriculture is a particularly sensitive sector to the potential impacts of climate change. Thus, irrigation infrastructure is required to be robust to cope with these potential threats. The objective of this research is designing more robust irrigation networks, considering cost and stakeholder contribution. To that end, the investigation was addressed in three phases: a sensitivity analysis to understand the effectiveness of the distinct variables, a cost-effectiveness analysis assessing their efficiency, and a global study of the most efficient variables to provide an insight into their function. The sensitivity analysis indicates that the networks oversized by means of the coefficient of utilisation or the factor of safety, behave better than those oversized via the continuous specific discharge; moreover, the degree of freedom has been shown ineffective. The cost-effectiveness analysis shows that the coefficient of utilisation and the factor of safety are the most efficient variables, as they introduced safety margin oversizing fewer network elements and to a lesser extent than the continuous specific discharge. It also shows that stakeholder contribution, conveyed as a reduction of the degree of freedom, plays an important role in the network’s adaptive capacity to change. The global study of these variables reveals the subtlety of the coefficient of utilisation, which is the variable that better reproduces the farmer behaviour during demand increase scenarios. In conclusion, the results identify the coefficient of utilisation as the variable which provides the safest margins and reveal the importance of stakeholder contribution in absorb the demand increase in a better manner.

Downloads

Download data is not yet available.

Author Biographies

Alfredo Granados, Technical University of Madrid (UPM), Dept. Hydraulic, Energy and Environmental Engineering. C. Profesor Aranguren 3, 28040 Madrid


Silvestre García de Jalón, Technical University of Madrid (UPM), Dept. Agricultural Economics and Social Sciences. Av. Puerta de Hierro 2, 28040 Madrid

References

Abadía R, 2003. Optimización del diseño y gestión de redes colectivas de distribución de agua para riego por goteo de cultivos leñosos. Aplicación al regadío de Mula (Murcia). Doctoral thesis. Univ. Miguel Hernández, Orihuela, Spain.

Berbel J, Gutiérrez C (Coords.), 2006. Sostenibilidad de la agricultura de regadío europea. La Directiva Marco de Aguas. Editorial Almuzara, Córdoba, Spain.

Clément R, 1966. Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande. La Houille Blanche 5: 553-575. http://dx.doi.org/10.1051/lhb/1966034

Clément R, Galand A, 1979. Irrigation par aspersion et réseaux collectifs de distribution sous pression. Eyrolles, Paris.

CTGREF, 1977. Ajustement expérimental de la formule de Clément pour un réseau collectif d'irrigation par aspersion. Note Technique 4. Centre Technique du Génie Rural des Eaux et des Forêts, Aix-en-Provence, France.

Daccache A, Weatherhead K, Lamaddalena N, 2010a. Climate change and the performance of pressurized irrigation water distribution networks under Mediterranean conditions. Impacts and adaptations. Outlook Agr 39(4): 277-283. http://dx.doi.org/10.5367/oa.2010.0013

Daccache A, Lamaddalena N, Fratino U, 2010b. On-demand pressurized water distribution system impacts on sprinkler network design and performance. Irrig Sci 28: 331-339. http://dx.doi.org/10.1007/s00271-009-0195-7

Döll P, 2002. Impact of climate change and variability on irrigation requirements: A global perspective. Climatic change 54(3): 269-293. http://dx.doi.org/10.1023/A:1016124032231

Dury J, Schaller N, Garcia F, Reynaud A, Bergez JE, 2012. Models to support cropping plan and crop rotation decisions. A review. Agron Sustain Dev 32(2): 567-580. http://dx.doi.org/10.1007/s13593-011-0037-x

Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA, 2007. Climate change impacts on irrigation water requirements: effects of mitigation, 1990-2080. Technol Forecast Soc 74(7): 1083-1107. http://dx.doi.org/10.1016/j.techfore.2006.05.021

Gianoccaro G, Berbel J, 2011. Influence of the common agricultural policy on the farmer's intended decision on water use. Span J Agric Res 9(4):1021-1034. http://dx.doi.org/10.5424/sjar/20110904-535-10

Granados A, 1986. Infraestructura de regadíos. Redes colectivas de riego a presión. Universidad Politécnica, ETS Ingenieros de Caminos, Canales y Puertos, Madrid.

Granados A, 2013. Criterios para el dimensionamiento de redes de riego robustas frente a cambios en la alternativa de cultivos. Doctoral thesis. Univ. Politécnica de Madrid, Madrid, Spain.

Iglesias A, Mougou R, Moneo M, Quiroga, S, 2011. Towards adaptation of agriculture of climate change in the Mediterranean. Reg Environ Change. 11(S1): S159-S166. http://dx.doi.org/10.1007/s10113-010-0187-4

Iglesias A, Garrote L, Quiroga S, Moneo M, 2012. A regional comparison of the effects of climate change on agricultural crops in Europe. Climatic change 112(1): 29-46. http://dx.doi.org/10.1007/s10584-011-0338-8

Íñiguez-Covarrubias M, León-Mojarro B, Prado-Hernández JV, Rendón-Pimentel L, 2007. Comparative analysis of three methods to determine canal capacities, applied to the La Begoña irrigation district. Ing Hidraul Mex 22(2): 81-90.

IPCC, 2013. Climate Change 2013: The Physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker TF et al. (eds). Cambridge University Press, NY, USA.

IRYDA, 1985. Normas para proyectos de riego por aspersión. Manual Técnico nº 3. Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional de Reforma y Desarrollo Agrario, Madrid.

Khadra R, Lamaddalena N, 2006. A simulation model to generate the demand hydrographs in large scale irrigation systems. Biosyst Eng 93(3): 335-346. http://dx.doi.org/10.1016/j.biosystemseng.2005.12.006

Labye Y, Olson MA, Galand A, Tsitouris N, 1988. Design and optimization of irrigation distribution networks. Irrig Drain Paper No. 44. FAO, Roma.

Lamaddalena N, Ciollaro G, 1993. Taratura della formula di Clément in un distretto irriguo dell'Italia meridionale. Atti del V Convegno Nazionale AIGR, Maratea (Italy), Jun 7-11, pp: 101-110.

Lamaddalena N, Sagardoy JA, 2000. Performance analysis of on-demand pressurized irrigation systems. Irrig Drain Paper No. 59. FAO, Roma.

Maeda EE, Pellikka PKE, Clark BJF, Siljander M, 2011. Prospective changes in irrigation water requirements caused by agricultural expansion and climate change changes in the eastern arc mountains of Kenya. J Environ Manage 92(3): 982-993. http://dx.doi.org/10.1016/j.jenvman.2010.11.005

Monserrat J, Poch R, Colomer MA, Mora F, 2004. Analysis of Clément's first formula for irrigation distribution networks. J Irrig Drain Eng 130(2): 99-105. http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:2(99)

Monserrat J, Ezpeleta M, Colomer MA, Cots LL, Barragán J, 2013. Influence of crop spatial variability when calculating irrigation network flows. Irrig Drain 62: 8-15. http://dx.doi.org/10.1002/ird.1713

Moreno MA, Planells P, Ortega JF, Tarjuelo JM, 2007. New methodology to evaluate flow rates in on-demand irrigation networks. J Irrig Drain Eng 133(4): 298-306. http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(298)

Moriondo M, Bindi M, Kundzewicz ZW, Zbigniew W, Szewd M, Chorynski A, Matczak P, Radziejewski M, McEvoy D, Wreford A, 2010. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Change 15(7): 657-679. http://dx.doi.org/10.1007/s11027-010-9219-0

Pérez-Urrestarazu L, Smout IK, Rodríguez Díaz JA, Carrillo MT, 2010. Irrigation distribution networks vulnerability to climate change. J Irrig Drain Eng 136(7): 486-493. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000210

Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC, 2003. Water delivery system planning considering irrigation simultaneity. J Irrig Drain Eng 129(4): 247-255. http://dx.doi.org/10.1061/(ASCE)0733-9437(2003)129:4(247)

Reca J, Martínez J, Roldán J, Callejón JL, 2002. Análisis de la fiabilidad de una red de riego en función de la simultaneidad de la demanda. Ingeniería del Agua 9(2): 157-162.

Rinaudo JD, Maton L, Terrason I, Chazot S, Richard-Ferroudji A, Caballero Y, 2013. Combining scenario workshops with modelling to assess future irrigation water demands. Agr Water Manage 130: 103-112. http://dx.doi.org/10.1016/j.agwat.2013.08.016

Rodríguez-Díaz JA, Weatherhead EK, Knox JW, Camacho E, 2007a. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Change 7(3): 149-159. http://dx.doi.org/10.1007/s10113-007-0035-3

Rodríguez-Díaz JA, Camacho E, López R, 2007b. Model to forecast maximum flows in on-demand irrigation distribution networks. J Irrig Drain Eng 133(3): 222-231. http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:3(222)

Published
2015-12-02
How to Cite
GranadosA., Martín-CarrascoF. J., García de JalónS., & IglesiasA. (2015). Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution. Spanish Journal of Agricultural Research, 13(4), e1205. https://doi.org/10.5424/sjar/2015134-7549
Section
Water management