Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

  • Mohamed A. Batnini Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Tunis
  • Lamia Krichen Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Tunis
  • Hedia Bourguiba Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Tunis
  • Neila Trifi-Farah Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Tunis
  • David Ruiz CEBAS-CSIC, Dept. Mejora Vegetal, Murcia
  • Pedro Martínez-Gómez CEBAS-CSIC, Dept. Mejora Vegetal, Murcia
  • Manuel Rubio CEBAS-CSIC, Dept. Mejora Vegetal, Murcia
Keywords: traditional breeding, modern breeding, molecular markers, SSRs, phenotype, association genetic


Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian) and a modern (Spanish) apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR) markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening.


Download data is not yet available.


Aranzana MJ, García-Mas J, Carbó J, Arús P, 2002. Development and variability analysis of microsatellite markers in peach. Plant Breeding 121: 87-92.

Badenes ML, Hurtado MA, Sanz F, Burgos L, 2000. Searching for molecular markers linked to male sterility and self-compatibility in apricot. Plant Breeding 119: 157-160.

Belkhir K, Goudet J, Chikhi L, Bonhomme F, 1996–2004. Genetix 4.05, logiciel pour Windows TM pour la génétique des populations. Laboratoire Genome et Populations, CNRS UPR 9060, Université de Montpellier II, Montpellier (France).

Bourguiba H, Krichen L, Audergon JM, Khadari B, Trifi-Farah N, 2010. Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28: 578-587.

Bourguiba H, Audergon JM, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, D'Onofrio C, Asma BM, Santoni S, Khadari B, 2012. Loss of genetic diversities a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12: 49.

Breseghello F, Coelho ASG, 2013. Traditional and modern plant breeding methods with examples in rice. J Agr Food Chem 61: 8277-8286.

Burgos L, Berenguer T, Egea J, 1993. Self-compatibility and cross-compatibility among apricot cultivars. HortScience 28: 148-150.

Carraut A, Crossa-Raynaud P, 1974. L'amélioration des variétés d'abricotier en Tunisie. Ann INRA Tunis 47: 33 pp.

Cipriani G, Lot G, Huang WG, Marrazzo MT, Petrtlunger E, Testolin R, 1999. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99: 65-72.

De Woody JA, Honeycutt RL, Skow LC, 1995. Microsatellite markers in white-tailed deer. J Heredity 86: 317-319.

Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret L, 2002. Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105: 127-138.

Doyle JJ, Doyle JL, 1987. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletine 19: 11-15.

Earl DA, Von Holdt BM, 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359-361.

Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L, 2011. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7: 323-335.

Egea J, Dicenta F, Burgos L, 2004. 'Rojo Pasión' apricot. HortScience 39: 1490-1491.

Egea J, Rubio M, Campoy JA, Dicenta F, Ortega E, Nortes MD, Martínez-Gómez P, Molina A, Ruiz D, 2010. 'Mirlo Blanco', 'Mirlo Anaranjado' and 'Mirlo Rojo': Three new very early season apricots for the fresh market. HortScience 45: 1893-1894.

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611-2620.

Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG, 2010. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185: 917-930.

Fernández-i-Martí A, Howad W, Tao R, Alonso JM, Arús P, Socias i Company R, 2011. Identification of quantitative trait loci associated with self- compatibility in a Prunus species. Tree Genet Genom 7: 629-639.

Kodad O, Hegedus A, Socias i Company R, Halász J, 2013. Self-(in)compatibility genotypes of Moroccan apricots indicate differences and similarities in the crop history of European and North African apricot germplasm. BMC Plant Biol 13: 196.

Krichen L, Mnejja M, Arus P, Marrakchi M, Trifi-Farah N, 2006. Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genet Resour Crop Evol 53: 1699-1706.

Krichen L, Audergon JM, Trifi-Farah N, 2014. Assessing the genetic diversity and population structure of Tunisian apricot germplasm. Sci Horticult 172: 86-100.

Liu K, Muse SV, 2005. Power marker: integrated analysis environment for genetic marker data. Bioinformatics 21: 2128-2129.

Lopes MS, Sefc KM, Laimer M, Da Camara Machado A, 2002. Identification of microsatellite loci in apricot. Mol Ecol Notes 2: 24-26.

Maghuly F, Fernández EB, Ruthner S, Pedryc A, Laimer M, 2005. Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genom 1: 151-165.

Martínez-Gómez P, Sozzi GO, Sánchez-Pérez R, Gradziel TM, 2003. New approaches to Prunus tree crop breeding. J Food Agr Environ 1: 52-63.

Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R, 2004. New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4: 432-434.

Mnejja M, García-Mas J, Howard W, Badenes ML, Arus P, 2004. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4: 163-166.

Perrier X, Jacquemoud-Collet JP, 2006. DARwin software.

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86: 248-249.

Romero C, Pedryc A, Muñoz V, Llácer G, Badenes ML, 2003. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.

Rubio M, Ruiz D, Egea J, Martínez-Gómez P, Dicenta F, 2014. Opportunities of marker assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genet Genom 10: 513-525.

Ruiz D, Lambert P, Audergon JM, Gouble B, Bureau S, Reich M, Dondini L, Tartarini S, Adami M, Bassi D, Testolin R, 2010. Identification of QTLs for fruit quality traits in apricot. Acta Horticult 862: 587-592.

Salazar JA, Ruiz D, Egea J, Martínez-Gómez P, 2013. Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 31: 1506-1517.

Sánchez-Pérez R, Ruiz D, Dicenta F, Egea J, Martinez-Gómez P, 2005. Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci Horticult 103: 305-315.

Sánchez-Pérez R, Martínez-Gómez P, Dicenta F, Egea J, Ruiz D, 2006. Level and transmission of genetic heterozygosity in apricot, explored by simple sequence repeat markers. Genet Resour Crop Evol 53: 763-770.

Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE and Abbott AG, 2000. Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor Appl Genet 101: 421-428.

Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori T, Pancaldi M, Sansavini S, 2000. Microsatellite DNA in peach (Prunus persica L Batsch) and it use in fingerprinting and testing the genetic origin of cultivars. Genome 43: 512-520.

Testolin R, Messina R, Lain O, Marrazo T, Huang G, Cipriani G, 2004. Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4: 459-461

Verde I, Quarta R, Cerdrola C, Dettori MT, 2002. QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592: 291-297

Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML, 2003. An apricot F2 progeny linkage map based on SSR and AFLP markers, mapping PPV resistance and self-incompatibility traits. Theor Appl Genet 107: 239-247.

Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG, 2003. Simple sequence repeat (SSR) for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106: 435-444.

How to Cite
BatniniM. A., KrichenL., BourguibaH., Trifi-FarahN., RuizD., Martínez-GómezP., & RubioM. (2016). Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm. Spanish Journal of Agricultural Research, 14(3), e0706.
Plant breeding, genetics and genetic resources