Effects of a tannin-rich legume (Onobrychis viciifolia) on in vitro ruminal biohydrogenation and fermentation

  • Pablo G. Toral Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León)
  • Gonzalo Hervás Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León) http://orcid.org/0000-0002-0013-7459
  • Hajer Missaoui Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León)
  • Sonia Andrés Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León) http://orcid.org/0000-0001-5255-1582
  • Francisco J. Giráldez Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León) http://orcid.org/0000-0002-0680-1541
  • Saida Jellali Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León)
  • Pilar Frutos Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros (León)
Keywords: condensed tannin, conjugated linoleic acid, fatty acid, lipid, rumen, sheep, sainfoin


There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH) of fatty acids (FA) and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia), on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents). Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations) showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (‒17, ‒23 and ‒11%, respectively). Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies.


Download data is not yet available.


Addis M, Cabiddu A, Pinna G, Decandia M, Piredda G, Pirisi A, Molle G, 2005. Milk and cheese fatty acid composition in sheep fed Mediterranean forages with reference to conjugated linoleic acid cis-9, trans-11. J Dairy Sci 88: 3443-3454. http://dx.doi.org/10.3168/jds.S0022-0302(05)73028-9

BOE, 2013. Royal Decree 53/2013, of 8 February, on the protection of animals used for experimental purposes. Boletín Oficial del Estado, pp. 11370–11421. Spanish Government Publishing, Madrid.

Buccioni A, Minieri S, Rapaccini S, Antongiovanni M, Mele M, 2011. Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid- and solid-associated bacteria: an in vitro study. Animal 5: 1521-1530. http://dx.doi.org/10.1017/S1751731111000759

Cabiddu A, Molle G, Decandia M, Spada S, Fiori M, Piredda G, Addis M, 2009. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Livest Sci 123: 230-240. http://dx.doi.org/10.1016/j.livsci.2008.11.019

Carreño D, Hervás G, Toral PG, Belenguer A, Frutos P, 2015. Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim Feed Sci Technol 202: 45-51.

Doce RR, Hervás G, Belenguer A, Toral PG, Giráldez FJ, Frutos P, 2009. Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Anim Feed Sci Technol 150: 75-85. http://dx.doi.org/10.1016/j.anifeedsci.2008.08.005

Fievez V, Colman E, Castro-Montoya JM, Stefanov I, Vlaeminck B, 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function - An update. Anim Feed Sci Technol 172: 51-65. http://dx.doi.org/10.1016/j.anifeedsci.2011.12.008

Frutos P, Hervás G, Giráldez FJ, Mantecón AR, 2004a. An in vitro study on the ability of polyethylene glycol to inhibit the effect of quebracho tannins and tannic acid on rumen fermentation in sheep, goats, cows, and deer. Aust J Agric Res 55: 1125-1132. http://dx.doi.org/10.1071/AR04058

Frutos P, Hervás G, Giráldez FJ, Mantecón AR, 2004b. Review. Tannins and ruminant nutrition. Span J Agric Res 2: 191-202. http://dx.doi.org/10.5424/sjar/2004022-73

Girard M, Dohme-Meier F, Silacci P, Ampuero Kragten S, Kreuzer M, Bee G, 2016. Forage legumes rich in condensed tannins may increase n-3 fatty acid levels and sensory quality of lamb meat. J Sci Food Agr (in press). http://dx.doi.org/10.1002/jsfa.7298

Goering MK, Van Soest PJ, 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agriculture handbook, No 379. Agricultural Research Service, USDA, Washington, USA.

Hervás G, Frutos P, Giráldez FJ, Mora MJ, Fernández B, Mantecón AR, 2005. Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim Feed Sci Technol 123-124: 107-118. http://dx.doi.org/10.1016/j.anifeedsci.2005.05.004

INRA, 2007. Alimentation des bovins, ovins et caprins. INRA, Versailles, France.

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE, 2008. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86: 397-412. http://dx.doi.org/10.2527/jas.2007-0588

Khiaosa-Ard R, Bryner SF, Scheeder MRL, Wettstein HR, Leiber F, Kreuzer M, Soliva CR, 2009. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. J Dairy Sci 92: 177-188. http://dx.doi.org/10.3168/jds.2008-1117

Lobón S, Molino F, Legua MA, Eseverri P, Cespedes MA, Joy M, 2015. Efecto del forraje y de la inclusión de concentrado en la dieta sobre la producción de gas y metano en ovino. Pastos y forrajes en el siglo XXI. 54 Reunión Científica de la Sociedad Española para el Estudio de los Pastos (SEEP), Palma de Mallorca (Spain), April 14-17. pp: 243-250.

Makkar HPS, 2003. Quantification of tannins in tree and shrub foliage. A laboratory manual. Kluwer Acad. Publ., Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-017-0273-7

McAllister TA, Bae HD, Jones GA, Cheng KJ, 1994. Microbial attachment and feed digestion in the rumen. J Anim Sci 72: 3004-3018.

Minieri S, Buccioni A, Rapaccini S, Pezzati A, Benvenuti D, Serra A, Mele M, 2014. Effect of Quebracho tannin extract on soybean and linseed oil biohydrogenation by solid associated bacteria: an in vitro study. Ital J Anim Sci 13: 604-608. http://dx.doi.org/10.4081/ijas.2014.3267

Mueller-Harvey I, 2006. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agr 86: 2010-2037. http://dx.doi.org/10.1002/jsfa.2577

Palmquist DL, Lock AL, Shingfield KJ, Bauman DE, 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Advances in food and nutrition research; Taylor SL (ed.). pp: 179-217. Elsevier Academic Press, San Diego, USA. http://dx.doi.org/10.1016/S1043-4526(05)50006-8

Parodi PW, 2009. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int Dairy J 19: 345-361. http://dx.doi.org/10.1016/j.idairyj.2009.01.001

Priolo A, Bella M, Lanza M, Galofaro V, Biondi L, Barbagallo D, Salem HB, Pennisi P, 2005. Carcass and meat quality of lambs fed fresh sulla (Hedysarum coronarium L.) with or without polyethylene glycol or concentrate. Small Ruminant Res 59: 281-288. http://dx.doi.org/10.1016/j.smallrumres.2005.05.012

Rodríguez R, Britos A, Rodríguez-Romero N, Fondevila M, 2011. Effect of plant extracts from several tanniferous browse legumes on in vitro microbial fermentation of the tropical grass Pennisetum purpureum. Anim Feed Sci Technol 168: 188-195. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.095

Romero-Pérez GA, Ominski KH, McAllister TA, Krause DO, 2011. Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ Microbiol 77: 258-268. http://dx.doi.org/10.1128/AEM.01289-09

Shingfield KJ, Ahvenjärvi S, Toivonen V, Äröla A, Nurmela KVV, Huhtanen P, Griinari JM, 2003. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim Sci 77: 165-179. ftp://s173-183-201-52.ab.hsia.telus.net/Inetpub/wwwroot/DairyScience/Resources/NTS/AS77_165.pdf

Shingfield KJ, Chilliard Y, Toivonen V, Kairenius P, Givens DI, 2008. Trans fatty acids and bioactive lipids in ruminant milk. Adv Exp Med Biol 606: 3-65. http://dx.doi.org/10.1007/978-0-387-74087-4_1

Smith AH, Zoetendal E, Mackie RI, 2005. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50: 197-205. http://dx.doi.org/10.1007/s00248-004-0180-x

Tiemann TT, Avila P, Ramírez G, Lascano CE, Kreuzer M, Hess HD, 2008. In vitro ruminal fermentation of tanniniferous tropical plants: plant-specific tannin effects and counteracting efficiency of PEG. Anim Feed Sci Technol 146: 222-241. http://dx.doi.org/10.1016/j.anifeedsci.2007.12.009

Toral PG, Shingfield KJ, Hervás G, Toivonen V, Frutos P, 2010. Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet. J Dairy Sci 93: 4804-4817. http://dx.doi.org/10.3168/jds.2010-3300

Toral PG, Hervás G, Bichi E, Belenguer A, Frutos P, 2011. Tannins as feed additives to modulate ruminal biohydrogenation: Effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fed a diet containing sunflower oil. Anim Feed Sci Technol 164: 199-206. http://dx.doi.org/10.1016/j.anifeedsci.2011.01.011

Toral PG, Belenguer A, Shingfield KJ, Hervás G, Toivonen V, Frutos P, 2012. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. J Dairy Sci 95: 794-806. http://dx.doi.org/10.3168/jds.2011-4561

Toral PG, Hervás G, Belenguer A, Bichi E, Frutos P, 2013. Effect of the inclusion of quebracho tannins in a diet rich in linoleic acid on milk fatty acid composition in dairy ewes. J Dairy Sci 96: 431-439. http://dx.doi.org/10.3168/jds.2012-5622

Turner SA, Waghorn GC, Woodhard SL, Thomson NA, 2005. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) affect the detailed composition of milk from dairy cows. Proc New Zeal Soc Anim Prod 65: 283-289.

Vasta V, Luciano G, 2011. The effects of dietary consumption of plants secondary compounds on small ruminants' products quality. Small Rumin Res 101: 150-159. http://dx.doi.org/10.1016/j.smallrumres.2011.09.035

Vasta V, Makkar HPS, Mele M, Priolo A, 2009. Ruminal biohydrogenation as affected by tannins in vitro. Brit J Nutr 102: 82-92. http://dx.doi.org/10.1017/S0007114508137898

How to Cite
ToralP. G., HervásG., MissaouiH., AndrésS., GiráldezF. J., JellaliS., & FrutosP. (2016). Effects of a tannin-rich legume (Onobrychis viciifolia) on in vitro ruminal biohydrogenation and fermentation. Spanish Journal of Agricultural Research, 14(1), e0602. https://doi.org/10.5424/sjar/2016141-8989
Animal production